The principle of continuous annular chromatography (CAC) has been known for several decades. CAC is a continuous chromatographic mode, which lends itself to the separation of multi-component mixtures as well as of bi-component ones. In CAC, the mobile and stationary phases move in a crosscurrent fashion, which allows transformation of the typical one-dimensional batch column separation into a continuous two-dimensional one. With the exception of linear gradient elution, all chromatographic modes have at present been applied in CAC. This review focuses on the capacity of CAC for preparative bioseparation. The historical developments and the predecessors of modern CAC are briefly summarized. The state-of-the-art in the theoretical prediction and simulation of CAC separations is discussed, followed by an overview of current CAC instrumentation and example applications, especially for the isolation of proteins and other bio(macro)molecules. In this context, issues of scale up as well as method development and transfer from batch to continuous CAC columns are discussed using recent bioseparation efforts as pertinent examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1570-0232(03)00085-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!