Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble.

J Chem Inf Comput Sci

Department of Chemistry, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802, USA.

Published: October 2003

Binary quantitative structure-activity relationship (QSAR) models are developed to classify a data set of 334 aromatic and secondary amine compounds as genotoxic or nongenotoxic based on information calculated solely from chemical structure. Genotoxic endpoints for each compound were determined using the SOS Chromotest in both the presence and absence of an S9 rat liver homogenate. Compounds were considered genotoxic if assay results indicated a positive genotoxicity hit for either the S9 inactivated or S9 activated assay. Each compound in the data set was encoded through the calculation of numerical descriptors that describe various aspects of chemical structure (e.g. topological, geometric, electronic, polar surface area). Furthermore, five additional descriptors that focused on the secondary and aromatic nitrogen atoms in each molecule were calculated specifically for this study. Descriptor subsets were examined using a genetic algorithm search engine interfaced with a k-Nearest Neighbor fitness evaluator to find the most information-rich subsets, which ultimately served as the final predictive models. Models were chosen for their ability to minimize the total number of misclassifications, with special attention given to those models that possessed fewer occurrences of positive toxicity hits being misclassified as nontoxic (false negatives). In addition, a subsetting procedure was used to form an ensemble of models using different combinations of compounds in the training and prediction sets. This was done to ensure that consistent results could be obtained regardless of training set composition. The procedure also allowed for each compound to be externally validated three times by different training set data with the resultant predictions being used in a "majority rules" voting scheme to produce a consensus prediction for each member of the data set. The individual models produced an average training set classification rate of 71.6% and an average prediction set classification rate of 67.7%. However, the model ensemble was able to correctly classify the genotoxicity of 72.2% of all prediction set compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci034013iDOI Listing

Publication Analysis

Top Keywords

data set
12
training set
12
secondary aromatic
8
model ensemble
8
set
8
chemical structure
8
set classification
8
classification rate
8
prediction set
8
models
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!