MiaB protein from Thermotoga maritima. Characterization of an extremely thermophilic tRNA-methylthiotransferase.

J Biol Chem

Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, Département Réponse et Dynamique Cellulaires-Chimie Biologique, UMR 5047 Commissariat à l'Energie Atomique/CNRS/Université Joseph Fourier, Commissariat à l'Energie Atomique/Grenoble, France.

Published: August 2003

In Escherichia coli, the MiaB protein catalyzes the methylthiolation of N-6-isopentenyl adenosine in tRNAs, the last reaction step during biosynthesis of 2-methylthio-N-6-isopentenyl adenosine (ms2i6A-37). For the first time the thermophilic bacterium Thermotoga maritima is shown here to contain such a MiaB tRNA-modifying enzyme, named MiaBTm, and to synthesize ms2i6A-37 as demonstrated by an analysis of modified nucleosides from tRNA hydrolysates. The corresponding gene (TM0653) was identified by sequence similarity to the miaB gene cloned and expressed in E. coli. MiaBTm was purified to homogeneity and thoroughly characterized by biochemical and spectroscopic methods. It is a monomer of 443 residues with a molecular mass of 50,710 kilodaltons. Its amino acid sequence shares the CysXXX-CysXXCys sequence with MiaB from E. coli as well as with biotin synthase and lipoate synthase. This sequence was shown to be essential for chelation of an iron-sulfur center and for activity in these enzymes. As isolated, MiaBTm contains both iron and sulfide and an apoprotein form can coordinate up to 4 iron and 4 sulfur atoms per polypeptide chain. UV-visible absorption, resonance Raman, variable temperature magnetic circular dichroism, and EPR spectroscopy of MiaBTm indicate the presence of a [4Fe-4S]+2/+1 cluster under reducing and anaerobic conditions, whereas [3Fe-4S]+1 and [2Fe-2S]+2 forms are generated under aerobic conditions. The redox potential of the [4Fe-4S]+2/+1 transition is -495 +/- 10 mV (versus the normal hydrogen electrode). Finally, the expression of MiaBTm from T. maritima in an E. coli mutant strain lacking functional miaB gene allowed production of ms2i6A-37. These results provide further information on the enzymes involved in methylthiolation of tRNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M301518200DOI Listing

Publication Analysis

Top Keywords

miab protein
8
thermotoga maritima
8
miab gene
8
miab
6
miabtm
5
protein thermotoga
4
maritima characterization
4
characterization extremely
4
extremely thermophilic
4
thermophilic trna-methylthiotransferase
4

Similar Publications

is a major contributor to bacterial-associated mortality, owing to its exceptional adaptability across diverse environments. Iron is vital to most organisms but can be toxic in excess. To manage its intracellular iron, , like many pathogens, employs intricate systems.

View Article and Find Full Text PDF

Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 but its precise role in Fe-S cluster metabolism is uncharacterized.

View Article and Find Full Text PDF

tRNA modification enzyme MiaB connects environmental cues to activation of Pseudomonas aeruginosa type III secretion system.

PLoS Pathog

December 2022

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.

Pseudomonas aeruginosa, a major inhabitant of numerous environmental reservoirs, is a momentous opportunistic human pathogen associated with severe infections even death in the patients suffering from immune deficiencies or metabolic diseases. Type III secretion system (T3SS) employed by P. aeruginosa to inject effector proteins into host cells is one of the pivotal virulence factors pertaining to acute infections caused by this pathogen.

View Article and Find Full Text PDF

Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance.

View Article and Find Full Text PDF

Numerous post-transcriptional modifications of transfer RNAs have vital roles in translation. The 2-methylthio-N-isopentenyladenosine (msiA) modification occurs at position 37 (A37) in transfer RNAs that contain adenine in position 36 of the anticodon, and serves to promote efficient A:U codon-anticodon base-pairing and to prevent unintended base pairing by near cognates, thus enhancing translational fidelity. The msiA modification is installed onto isopentenyladenosine (iA) by MiaB, a radical S-adenosylmethionine (SAM) methylthiotransferase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!