Pierce's formulation for the diffraction of spherical waves by a hard wedge has been extended to the case of the sound field due to a dipole source. The same approach is also used to extend a semiempirical model for sound propagation above an impedance discontinuity due to a dipole source. The resulting formulas have been validated by comparing their numerical solutions with that computed by summing the sound fields due to two closely spaced monopole sources of equal magnitude but opposite in phase. These new formulations are then used to develop a simple model for calculating the dipole sound field diffracted by a barrier above an impedance ground. Applications of these models relate to transportation noise prediction, particularly railway noise abatement, for which dipole sources are commonly used. The numerical predictions have been found to compare reasonably well with indoor measurements using piezoceramic transducers as dipole sources.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.1566977DOI Listing

Publication Analysis

Top Keywords

dipole source
12
barrier impedance
8
impedance discontinuity
8
sound field
8
dipole sources
8
dipole
6
diffraction sound
4
sound dipole
4
source barrier
4
discontinuity pierce's
4

Similar Publications

The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.

View Article and Find Full Text PDF

Organic-inorganic formamidinium lead triiodide (FAPbI) hybrid perovskite quantum dots (QDs) have garnered considerable attention in the photovoltaic field due to their narrow bandgap, exceptional environmental stability, and prolonged carrier lifetime. Unfortunately, their insulating ligands and surface vacancy defects pose significant obstacles to efficient charge transfer across device interfaces. In this work, an electrostatic harmonization strategy at the interface using a donor-acceptor dipole molecular attachment to achieve enhanced charge separation capabilities on the QD surface is ventured.

View Article and Find Full Text PDF

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation.

View Article and Find Full Text PDF

Objective: The most common medically resistant epilepsy (MRE) involves the temporal lobe (TLE), and children designated as temporal plus epilepsy (TLE+) have a five-times increased risk of postoperative surgical failure. This retrospective, blinded, cross-sectional study aimed to correlate visual and computational analyses of magnetoencephalography (MEG) virtual sensor waveforms with surgical outcome and epilepsy classification (TLE and TLE+).

Methods: Patients with MRE who underwent MEG and iEEG monitoring and had at least 1 year of postsurgical follow-up were included in this retrospective analysis.

View Article and Find Full Text PDF

Breaking Solvation Dominance Effect Enabled by Ion-Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries.

Nanomicro Lett

December 2024

State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.

Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion-dipole interaction between lithium ions (Li) and succinonitrile (SN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!