Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
4-Methylbenzylidene-camphor (4-MBC) is an organic sunscreen that protects against UV radiation and may therefore help in the prevention of skin cancer. Recent results on the estrogenicity of 4-MBC have raised concerns about a potential of 4-MBC to act as an endocrine disruptor. Here, we investigated the direct interaction of 4-MBC with estrogen receptor (ER) alpha and ERbeta in a series of studies including receptor binding, ER transactivation and functional tests in human and rat cells. 4-MBC induced alkaline phosphatase activity, a surrogate marker for estrogenic activity, in human endometrial Ishikawa cells. Interestingly, 4-MBC induced weakly ERalpha and with a higher potency ERbeta mediated transactivation in Ishikawa cells at doses more than 1 microM, but showed no distinct binding affinity to ERalpha or ERbeta. In addition, 4-MBC was an effective antagonist for ERalpha and ERbeta. In an attempt to put 4-MBC's estrogenic activity into perspective we compared binding affinity and potency to activate ER with phyto- and xenoestrogens. 4-MBC showed lower estrogenic potency than genistein, coumestrol, resveratrol, bisphenol A and also camphor. Analysis of a potential metabolic activation of 4-MBC that could account for 4-MBC's more distinct estrogenic effects observed in vivo revealed that no estrogenic metabolites of 4-MBC are formed in primary rat or human hepatocytes. In conclusion, we were able to show that 4-MBC is able to induce ERalpha and ERbeta activity. However, for a hazard assessment of 4-MBC's estrogenic effects, the very high doses of 4-MBC required to elicit the reported effects, its anti-estrogenic properties as well as its low estrogenic potency compared to phytoestrogens and camphor has to be taken into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4274(03)00016-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!