Poor immune reconstitution after haploidentical stem cell transplantation results in a high mortality from viral infections and relapse. One approach to overcome this problem is to selectively deplete the graft of alloreactive cells using an immunotoxin directed against the activation marker CD25. However, the degree of depletion of alloreactive cells is variable following stimulation with recipient peripheral blood mononuclear cells (PBMCs), and this can result in graft versus host disease (GVHD). We have refined this approach using recipient Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) as stimulators to activate donor alloreactive T cells. Our studies demonstrate that allodepletion with an anti-CD25 immunotoxin following stimulation with HLA-mismatched host LCLs more consistently depleted in vitro alloreactivity than stimulation with host PBMCs, as assessed in primary mixed lymphocyte reactions (MLRs). Allodepletion using this approach specifically abrogates cytotoxic T-cell responses against host LCLs. In interferon-gamma (IFN-gamma) enzyme-linked immunospot (ELISPOT) assays, antiviral responses to adenovirus and cytomegalovirus (CMV) were preserved following allodepletion. Likewise, using HLA-A2-pp65 tetramers, we have shown that the frequency of CMV-specific T cells is unaffected by allodepletion. Moreover, the donor anti-EBV response is partially retained by recognition of EBV antigens through the nonshared haplotype. Finally, we studied whether allodepletion affects the response to candidate tumor antigens in myeloid malignancies. Using HLA-A2-PR1 tetramer analysis, we found that the frequency of T cells recognizing the PR1 epitope of proteinase 3 was not significantly different in allodepleted and unmanipulated PBMCs from patients with chronic myeloid leukemia (CML) undergoing transplantation. Based on these data, we have embarked on a phase 1 clinical trial of addback of allo-LCL-depleted donor T cells in the haplo-identical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2002-11-3516 | DOI Listing |
Mol Ther
January 2025
Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, NI, Germany. Electronic address:
Antibody-mediated rejection (AMR) remains a major complication after solid organ transplantation (SOT). Current treatment options are inefficient and result in drastic impairment of the general immunity. To selectively eliminate responsible alloreactive B cells characterized by anti-donor-HLA B cell receptors (BCRs), we generated T cells overcoming rejection by antibodies (CORA-Ts) engineered with a novel chimeric receptor comprising a truncated donor-HLA molecule as antigen recognition domain.
View Article and Find Full Text PDFCell Rep Med
January 2025
Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China. Electronic address:
Clinical application of autologous chimeric antigen receptor (CAR)-T cells is complicated by limited targeting of cancer types, as well as the time-consuming and costly manufacturing process. We develop CD70-targeted, induced pluripotent stem cell-derived CAR-natural killer (NK) (70CAR-iNK) cells as an approach for universal immune cell therapy. Besides the CD70-targeted CAR molecule, 70CAR-iNK cells are modified with CD70 gene knockout, a high-affinity non-cleavable CD16 (hnCD16), and an interleukin (IL)-15 receptor α/IL-15 fusion protein (IL15RF).
View Article and Find Full Text PDFAnn Hematol
December 2024
Department of Hematology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan.
Follicular lymphoma (FL) may undergo histological transformation (HT) into a more aggressive lymphoma. Although rituximab for B-cell non-Hodgkin lymphomas (B-NHL) has greatly improved the overall survival (OS) of patients with transformed FL (tFL), relapse after anthracycline-based chemoimmunotherapy has a poor prognosis. CD19-targeting chimeric antigen receptor-modified T-cell (CAR-T) therapy is a promising treatment for relapsed or refractory (r/r) large B-cell lymphoma (LBCL), including tFL.
View Article and Find Full Text PDFLong-term allograft survival is limited by humoral-associated chronic allograft rejection, suggesting inadequate constraint of humoral alloimmunity by contemporary immunosuppression. Heterogeneity in alloreactive B cells and the incomplete definition of which B cells participate in chronic rejection in immunosuppressed transplant recipients limits our ability to develop effective therapies. Using a double-fluorochrome single-HLA tetramer approach combined with single-cell culture, we investigated the B-cell receptor (BCR) repertoire characteristics, avidity, and phenotype of donor HLA-DQ reactive B cells in a transplant recipient with end-stage donor specific antibody (DSA)-associated cardiac allograft vasculopathy while receiving maintenance immunosuppression (tacrolimus, mycophenolate mofetil, prednisone).
View Article and Find Full Text PDFAm J Transplant
December 2024
Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
After skin allotransplantation, intercellular transfer of donor major histocompatibility complex molecules mediated primarily by extracellular vesicles (EVs) released by the allograft is known to contribute to semidirect and indirect activation of alloreactive T cells involved in graft rejection. At the same time, there is ample evidence showing that initiation of adaptive alloimmunity depends on early innate inflammation caused by tissue injury and subsequent activation of myeloid cells (macrophages and dendritic cells) recognizing danger-associated molecular patterns. Among these danger-associated molecular patterns, extracellular adenosine triphosphate plays a key role in innate inflammation by binding to P2X7 receptors (P2X7Rs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!