The gamma subunit of Na,K-ATPase and CHIF both belong to the FXYD single-membrane-spanning protein family and have been suggested to have regulatory functions in kidney tubules. CHIF is known to be present in the collecting duct, and gamma has been demonstrated in several segments of the rat kidney tubule, but never clearly in the inner medullary collecting duct (IMCD). Here, we demonstrate the cellular and subcellular localization of the gamma subunit and CHIF in the IMCD in inner medulla by using Western blotting, laser-scanning confocal immunofluorescence, and immunoelectron microscopy. In the initial quarter of the IMCD (next to the outer medulla), antibodies against the C-terminal of gamma as well as splice variant gammaa labeled the basolateral surface of intercalated cells (ICs), while principal cells (PCs) remained unlabeled. In the middle segment of the IMCD, all PCs exhibited distinct basolateral staining for the gammaC-terminal as well as gammaa and CHIF. Immunoelectron microscopy showed that the gammaC-terminal and CHIF were associated with the inner leaflet of the basolateral plasma membrane in the labeled cells. Immunoblotting demonstrated the presence of both the gammaC-terminal and gammaa in inner medullary tissue. However, splice variant gammab was not detected in inner medulla by immunocytochemistry or immunoblotting. The present observations demonstrate that the Na,K-ATPase gamma subunit and CHIF are strategically located in the inner medulla to participate in the fine-tuning of urine ion composition through the regulation of the Na,K-ATPase activity in the IMCD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07221.xDOI Listing

Publication Analysis

Top Keywords

gamma subunit
16
inner medulla
16
subunit chif
12
nak-atpase gamma
8
rat kidney
8
collecting duct
8
inner medullary
8
immunoelectron microscopy
8
splice variant
8
chif
7

Similar Publications

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF

Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of marks ATP synthase as an important complex of the electron transport chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!