Patch-clamp electrophysiological techniques allow manipulations of electrochemical driving forces for ion transport by the Na,K-ATPase. For this reason, this technique has been used to study steady-state ion transport properties of the Na,K-ATPase. High temporal resolution during these manipulations also permits rapid reactions, such as extracellular ion-binding reactions, to be measured as charge movements when the enzyme is engaged in electroneutral ion exchange modes. Just as useful, but less widely recognized, is the ease with which electrophysiological techniques can be used to critically study reaction steps that do not directly involve ion binding. Three studies are briefly presented to show how pre-steady-state and/or steady-state electrophysiological techniques can be used to study ion-binding reactions in a novel fashion and the kinetics of electrically silent reaction steps of this enzyme. The reaction kinetics derived from each of these studies can be used to attain detailed mechanistic information about ion transport by the Na,K-ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07151.xDOI Listing

Publication Analysis

Top Keywords

ion transport
16
reaction kinetics
12
transport nak-atpase
12
electrophysiological techniques
12
electrically silent
8
ion-binding reactions
8
reaction steps
8
ion
6
nak-pump reaction
4
kinetics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!