Monoclonal antibody J1-31 was raised against plaque materials taken from brains of patients who had suffered from multiple sclerosis (MS). Preliminary characterization of the antigen revealed it to be a protein of M(w) 68-70 kDa with both a cytoplasmic and nuclear localization. Here we report the results of isolation and peptide sequencing of the antigen from human brains, and immunocytochemical analysis of the antigen in F98 glioma cells. Purification and peptide sequencing indicate that the antibody recognizes a form of glial fibrillary acidic protein, possibly a phosphorylated variant. However, confocal immunocytochemistry and western analysis of F98 glioma cells raise the possibility that it also recognizes a phosphorylated epitope found in nuclear lamins. Analysis of the expression of the J1-31 epitope in F98 cells with respect to time in culture, cell density, and DNA synthesis showed a developmental relationship: cells that were engaged in rapid growth and DNA synthesis exhibited strong J1-31 staining in nuclei, whereas quiescent cells did not. We conclude that mAB J1-31 remains a useful antibody for studying multiple sclerosis, and is likely to prove useful in studies of the dynamics of nuclear lamins, particularly in models for wound-healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(03)02597-6DOI Listing

Publication Analysis

Top Keywords

nuclear lamins
12
monoclonal antibody
8
antibody j1-31
8
multiple sclerosis
8
peptide sequencing
8
f98 glioma
8
glioma cells
8
dna synthesis
8
j1-31
5
cells
5

Similar Publications

D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.

View Article and Find Full Text PDF

The Role of the LINC Complex in Ageing and Microgravity.

Mech Ageing Dev

January 2025

Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands.

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent.

View Article and Find Full Text PDF

Mechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.

View Article and Find Full Text PDF

The nuclear lamin network passively responds to both active or passive cell movement through confinements.

Soft Matter

January 2025

Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.

Physical models of cell motility rely mostly on cytoskeletal dynamical assembly. However, when cells move through the complex 3D environment of living tissues, they have to squeeze their nucleus that is stiffer than the rest of the cell. The lamin network, organised as a shell right underneath the nuclear membrane, contributes to the nuclear integrity and stiffness.

View Article and Find Full Text PDF

Perinuclear organelle trauma at the nexus of cardiomyopathy pathogenesis arising from loss of function mutation.

Nucleus

December 2025

Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Over the past 25 years, nuclear envelope (NE) perturbations have been reported in various experimental models with mutations in the gene. Although the hypothesis that NE perturbations from mutations are a fundamental feature of striated muscle damage has garnered wide acceptance, the molecular sequalae provoked by the NE damage and how they underlie disease pathogenesis such as cardiomyopathy ( cardiomyopathy) remain poorly understood. We recently shed light on one such consequence, by employing a cardiomyocyte-specific deletion in the adult heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!