To investigate the effect of resting blood oxygen concentration on the hemodynamic response to functional brain activation, we compared activation-induced changes in hemoglobin oxygenation during normoxia with systemic hyperoxia or mild hypoxia. Hemoglobin oxygenation changes were measured by microfiber optical spectroscopy (500-590 nm) in response to physiological whisker barrel cortex activation by whole whisker pad deflection (4 s, 4 Hz) in alpha-chloralose/urethane anesthetised male Wistar rats. During systemic hyperoxia (n=6), the stimulation-induced hyperoxygenation response was decreased and prolonged, whereas during mild systemic hypoxia (n=7) the peak response was significantly increased followed by a faster return to baseline. During normoxia, a poststimulation under- (oxy-hemoglobin) and overshoot (deoxy-hemoglobin) was observed, which disappeared during systemic hyperoxia and was pronounced during systemic hypoxia. Although averaging out below statistical significance when combining all animals, during mild systemic hypoxia a very small early increase of deoxy-Hb at the beginning of the stimulation period was conspicuous more often than during normoxic or even hyperoxic conditions. This small early increase of deoxy-Hb never preceded the onset of the oxy-Hb response, and was not accompanied by a concomitant decrease in oxy-Hb. Hyperoxia or hypoxia did not affect the induced neuronal responses. Our findings support the concept that the hemodynamic response is regulated according to the metabolic demand of oxygen within the activated tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(03)02602-7 | DOI Listing |
Eur J Transl Myol
January 2025
Institute of Clinical Physiology, National Research Council (IFC-CNR), Milan.
Hyperbaric oxygen therapy (HBOT) is a non-invasive method of O2 delivery that induces systemic hyperoxia. Hyperbaric chamber consists of a pressure vessel and a compressed breathing gas supply, which can regulate internal pressure. The chamber delivers 100% O2 to patients according to predetermined protocols and is monitored by trained personnel.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.
Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.
View Article and Find Full Text PDFTransl Vis Sci Technol
December 2024
Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
Purpose: Currently, no standard for the measurement of retinal oxygen extraction exists. Here, we present a novel approach for measurement of retinal oxygen extraction based on two commercially available devices, namely laser speckle flowgraphy (LSFG) and retinal oximetry.
Methods: The study was conducted in a randomized, double-masked design.
Int J Mol Sci
November 2024
Department of Emergency Medicine, School of Medicine, University of Maryland, Baltimore, MD 21250, USA.
Surv Ophthalmol
January 2025
Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium; Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium. Electronic address:
The retina allows noninvasive in vivo assessment of the microcirculation. Autoregulation of the retinal microvasculature meets the changing requirements of local metabolic demand and maintains adequate blood flow. Analysis of the retinal vascular reactivity contributes to the understanding of regulatory physiology and its relationship to the systemic microcirculation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!