No effects of cervical spine motion on cranial dura mater strain.

Clin Biomech (Bristol)

Laboratory for Functional Anatomy, University of Brussels, 808, route de Lennik (CP 619), B-1070 Brussels, Belgium.

Published: June 2003

Objective: The aim of this study was to analyze the effects of cervical spine motion on cranial dura mater length variations in anatomical specimens using high-resolution linear displacement transducers. We hypothesized that transducer resolution was sufficient to measure dura mater length changes if they occurred during cervical spine motion.

Design: Cranial dura mater strain was measured using differential variable reluctance transducers during cervical spine motion in 11 formaldehyde-fixed whole-body anatomical specimens (mean age: 82 years).

Background: Several theories hypothesize that functional maneuvers carried out on the spine have an effect on intra-cranial structures due to the supposed continuity of spinal and cranial dura mater. The displacements of the spinal dura mater are supposed to be transmitted to the cranial dura mater.

Methods: Eleven anatomical specimens were used. Each specimen (positioned supine) was provided with three openings in the skull (frontal and parietal regions), leaving the dura mater intact. A differential variable reluctance transducer was inserted in frontal or sagittal orientation in the dura mater exposed in each opening. Strain was recorded during cyclic motions of cervical spine flexion-extension, lateral bending and axial rotation.

Results: Average length changes ranged from 0.01 to 0.13% (SD 0.01-0.21%) of initial length for all motions and locations studied, which in all cases was less than the accuracy of the transducers.

Conclusion: It can thus be concluded that cervical spine motion does not induce significant strain of the cerebral dura mater.

Relevance: The present study does not support theories that are based on the transmission of strains from spinal to cranial dura mater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0268-0033(03)00041-xDOI Listing

Publication Analysis

Top Keywords

dura mater
36
cervical spine
24
cranial dura
24
spine motion
16
anatomical specimens
12
dura
11
mater
9
effects cervical
8
motion cranial
8
mater strain
8

Similar Publications

Indirect bypass using autologous tissue is effective in Moyamoya disease, especially among pediatric patients. This study aimed to evaluate the effectiveness of indirect bypass using DuraGen (absorbable artificial dura mater composed of collagen matrix), as a substitute for autologous tissue in a rat model of chronic cerebral hypoperfusion. Male Wistar rats were subjected to bilateral internal carotid artery occlusion and divided into three groups: a control group without bypass surgery, a group wherein indirect bypass was performed using the temporalis muscle (encephalo-myo-synangiosis [EMS] group), and a group wherein DuraGen was used (Dura group).

View Article and Find Full Text PDF

Hypertrophic pachymeningitis (HP) is a rare inflammatory disease that causes the thickening of the dura mater. Its etiology is mainly classified as idiopathic or secondary, and autoimmune disease is one of the main causes of secondary HP. Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgG4-related disease are common among autoimmune diseases.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Postoperative pseudomeningocele is a rare, but still existing, complication after spinal surgeries. It may be asymptomatic or presented with back pain, radicular pain or headaches. Many pseudomeningoceles resolve spontaneously, others require revision surgery with dural repair.

View Article and Find Full Text PDF

Background: Lumbar burst fracture combined with lamina fracture is a special type of spinal fracture. Neither CT nor MRI can accurately determine it. The present study aims to investigate the clinical value of 3D CT/MRI fusion imaging in the treatment of lumbar burst fracture complicated with lamina fracture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!