Charcot-Marie-Tooth (CMT) neuropathy is one of the most common hereditary disorders of the human peripheral nervous system. The CMT syndrome includes weakness and atrophy of distal muscles, high arched feet (pes cavus), depressed or absent deep tendon reflexes, and mild sensory loss. Dominant intermediate CMT (DI-CMT) neuropathy is a form of CMT with intermediate median motor nerve conduction velocities. We previously localized the DI-CMT locus to a 16.8-cM region on chromosome 19p12-p13.2. Extended haplotype analysis and clinical assessment of additional family members and a report of a second family linked to this locus has enabled us to narrow the candidate region to a 6-cM interval flanked by D19S558 and D19S432. Selection of positional candidate genes for screening was performed on the basis of neural expression and microarray analysis of Schwann cell differentiation in vivo. Seven candidate genes have been investigated. These include six genes localized in the original linkage interval and one in the newly refined region. They are excluded as a cause for DI-CMT neuropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-003-0147-yDOI Listing

Publication Analysis

Top Keywords

candidate genes
12
dominant intermediate
8
di-cmt neuropathy
8
refined localization
4
localization dominant
4
intermediate charcot-marie-tooth
4
neuropathy
4
charcot-marie-tooth neuropathy
4
neuropathy exclusion
4
candidate
4

Similar Publications

Levilactobacillus brevis YT108, identified for its ability to metabolize prebiotic xylo-oligosaccharides (XOS), emerges as a candidate for probiotic use in synbiotic food formulations. This study aimed to investigate the metabolic and genomic traits associated with XOS metabolism in YT108 and to assess its probiotic attributes through whole genome sequencing and in vitro assays. Strain YT108 exhibited robust growth kinetics on XOS as the sole carbon source, with a growth profile comparable to that on glucose, achieving a pH reduction to 4.

View Article and Find Full Text PDF

Genetics of Tourette Syndrome.

Psychiatr Clin North Am

March 2025

Department of Psychiatry and Yale Child Study Center, Yale School of Medicine, 230 South Frontage Road, New Haven, CT 06520, USA. Electronic address:

This review explores the genetic basis of Tourette syndrome (TS), a complex neuropsychiatric disorder characterized by motor and vocal tics. Family, twin, and molecular genetic studies provide strong evidence for a genetic component in TS, with heritability estimates ranging from 50% to 80%. The genetic architecture of TS is complex, involving both common variants with small effects and rare variants with larger effects.

View Article and Find Full Text PDF

Pelvic floor disorder (PFD) is a common gynecological disorder, and with the ageing of the population, PFD has a serious impact on the physical and mental health of patients and their quality of life. The most prominent of these are pelvic organ prolapse (POP) and urinary incontinence (UI), about which the etiology is still unclear, and it is urgent to explore their pathogenesis. Advances in genetics and epigenetics have provided new insights into the pathophysiology of PFD.

View Article and Find Full Text PDF

Alkaline stress impairs fish productivity and performance and, therefore, is considered one of the major challenges facing aquaculture. In this work, the effects of supplementing diets with camel whey protein hydrolysates (WPH) on growth, digestion, antioxidant capacity, and gene expression were investigated in Nile tilapia (Oreochromis niloticus) under alkaline stress. A total of 160 fish (16.

View Article and Find Full Text PDF

Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield.

Nature

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Soil alkalinization and global warming are predicted to pose major challenges to agriculture in the future, as they continue to accelerate, markedly reducing global arable land and crop yields. Therefore, strategies for future agriculture are needed to further improve globally cultivated, relatively high-yielding Green Revolution varieties (GRVs) derived from the SEMIDWARF 1 (SD1) gene. Here we propose that precise regulation of the phytohormone gibberellin (GA) to optimal levels is the key to not only confer alkali-thermal tolerance to GRVs, but also to further enhance their yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!