The TRPS1 gene codes for a 1281 amino acids nuclear transcription factor with an unusual combination of different types of zinc finger motifs, including GATA-type DNA-binding and IKAROS-like zinc fingers. TRPS1 is a repressor of GATA-regulated genes and implicated in the human tricho-rhino-phalangeal syndromes. We found that two distinct regions of TRPS1 can physically interact with the dynein light chain 8 protein, LC8a, that are at least 458 amino acids apart from each other. Region A covers 89 amino acids (635-723), spanning three potential C(2)H(2) zinc finger structures, and region B covers the 100 most C-terminal amino acids (1182-1281) containing the IKAROS-like motif. LC8a is known to interact with more than 10 different molecules, both proteins and nucleic acids. In most cases, LC8a was identified as a transport molecule in the cytoplasm. Interestingly, we found that LC8a co-localizes with TRPS1 in dot-like structures in the cell nucleus. In an electrophoretic mobility shift assay we could show that the interaction of LC8a and TRPS1 lowers the binding of TRPS1 to the GATA consensus sequence. In addition, GATA-regulated reporter gene assay indicated that LC8a is able to suppress the transcriptional repression activity of TRPS1.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddg145DOI Listing

Publication Analysis

Top Keywords

amino acids
16
trps1
9
dynein light
8
light chain
8
lc8a trps1
8
transcription factor
8
transcriptional repression
8
repression activity
8
activity trps1
8
zinc finger
8

Similar Publications

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

A phytoplasma effector suppresses insect melanization immune response to promote pathogen persistent transmission.

Sci Adv

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.

Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.

View Article and Find Full Text PDF

Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine.

View Article and Find Full Text PDF

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!