Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. Although increased circulating levels of uPA are present in endotoxemia and sepsis, conditions in which activated neutrophils contribute to the development of acute organ dysfunction, the ability of uPA to participate directly in LPS-induced neutrophil activation has not been examined. In the present experiments, we show that uPA can enhance activation of neutrophils exposed to submaximal stimulatory doses of LPS. In particular, uPA increased LPS-induced activation of intracellular signaling pathways, including Akt and c-Jun N-terminal kinase, nuclear translocation of the transcriptional regulatory factor NF-kappa B, and expression of proinflammatory cytokines, including IL-1 beta, macrophage-inflammatory protein-2, and TNF-alpha. There was no effect of uPA on LPS-induced activation of p38 mitogen-activated protein kinase in neutrophils. Transgenic mice unable to produce uPA (uPA(-/-)) were protected from endotoxemia-induced lung injury, as determined by development of lung edema, pulmonary neutrophil accumulation, lung IL-1 beta, macrophage-inflammatory protein-2, and TNF-alpha cytokine levels. These results demonstrate that uPA can potentiate LPS-induced neutrophil responses and also suggest that such effects are sufficiently important in vivo to play a major contributory role in neutrophil-mediated inflammatory responses, such as the development of acute lung injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.170.11.5644 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!