Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Collagen degradation by matrix metalloproteinases is the limiting step in reversing liver fibrosis. Although collagen production in cirrhotic livers is increased, the expression and/or activity of matrix metalloproteinases could be normal, increased in early fibrosis, or decreased during advanced liver cirrhosis. Hepatic stellate cells are the main producers of collagens and matrix metalloproteinases in the liver. Therefore, we sought to investigate whether they simultaneously produce alpha1(I) collagen and matrix metalloproteinase-13 mRNAs. In this communication we show that expression of matrix metalloproteinase-13 mRNA is reciprocally modulated by tumor necrosis factor-alpha and transforming growth factor-beta1. When hepatic stellate cells are co-cultured with hepatocytes, matrix metalloproteinase-13 mRNA is up-regulated and alpha1(I) collagen is down-regulated. Injuring hepatocytes with galactosamine further increased matrix metalloproteinase-13 mRNA production. Confocal microscopy and differential centrifugation of co-cultured cells revealed that matrix metalloproteinase-13 is localized mainly within hepatic stellate cells. Studies performed with various hepatic stellate cell lines revealed that they are heterogeneous regarding expression of matrix metalloproteinase-13. Those with myofibroblastic phenotypes produce more type I collagen whereas those resembling freshly isolated hepatic stellate cells express matrix metalloproteinase-13. Overall, these findings strongly support the notion that alpha1(I) collagen and matrix metalloproteinase-13 mRNAs are reciprocally modulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868138 | PMC |
http://dx.doi.org/10.1016/S0002-9440(10)64312-X | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!