The efficiency of cancer gene therapy with recombinant adenoviruses based on serotype 5 (Ad5) has been limited partly because of variable, and often low, expression by human primary cancer cells of the primary cellular-receptor which recognizes the knob domain of the fiber protein, the coxsackie and adenovirus receptor (CAR). As a means of circumventing CAR deficiency, Ad vectors have been retargeted by utilizing chimeric fibers possessing knob domains of alternate Ad serotypes. We have reported that ovarian cancer cells possess a primary receptor for Ad3 to which the Ad3 knob binds independently of the CAR-Ad5 knob interaction. Furthermore, an Ad5-based chimeric vector, designated Ad5/3, containing a chimeric fiber proteins possessing the Ad3 knob, demonstrates CAR-independent tropism by virtue of targeting the Ad3 receptor. Based on these findings, we hypothesized that a mosaic virus possessing both the Ad5 knob and the Ad3 knob on the same virion could utilize either primary receptor, resulting in expanded tropism. In this study, we generated a dual-knob mosaic virus by coinfection of 293 cells with Ad5-based and Ad5/3-based vectors. Characterization of the resultant virions confirmed the incorporation of both Ad5 and Ad3 knobs in the same particle. Furthermore, this mosaic virus was able to utilize either receptor, CAR and the Ad3 receptor, for virus attachment to cells. Enhanced Ad infectivity with the mosaic virus was shown in a panel of cell lines, with receptor profiles ranging from CAR-dominant to Ad3 receptor-dominant. Thus, this mosaic virus strategy may offer the potential to improve Ad-based gene therapy approaches by infectivity enhancement and tropism expansion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0042-6822(03)00067-9 | DOI Listing |
Theor Appl Genet
January 2025
Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Agronomy and Plant Breeding Sciences, Agricultural College of Aburaihan, University of Tehran, Pakdasht, Iran.
Background: Tomato yellow leaf curl virus (TYLCV), tomato mosaic virus (ToMV), and Fusarium wilt are three of tomatoes' most important viral and fungal diseases.
Methods And Results: In this study, the application of molecular markers associated with tomato yellow leaf curl virus resistance gene (Ty1), tomato mosaic virus resistance gene (Tm2), and Fusarium wilt resistance gene (I-1) (linked marker) were evaluated. In order to optimize and use SNP markers (by HRM diagnostic method) and SCAR markers, segregating populations of tomatoes were produced by self-pollination of commercial hybrid cultivars.
Sci Rep
January 2025
Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
This study aims to enhance sustainable disease management in black gram by identifying varieties resistant to Mungbean Yellow Mosaic India Virus (MYMIV). We screened sixteen black gram genotypes, assessing physiological, biochemical and enzymatic basis. Results revealed a range of resistance levels, with PANT URD-19 showing the highest resistance (PDI 0.
View Article and Find Full Text PDFArch Virol
January 2025
Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France.
Here, we report the discovery of a new beny-like virus in winter wheat (Triticum aestivum L.) plants collected in the Brittany and Burgundy regions of France in spring 2022, using a high-throughput sequencing approach. A complete genome sequence, comprising two genomic RNAs of 6734 nt (RNA1) and 4856 nt (RNA2) was obtained.
View Article and Find Full Text PDFViruses
December 2024
Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia.
Over the past two decades, plant viral vectors have emerged as a powerful tool for the production of recombinant proteins in plants. Among the different plant viruses engineered to carry foreign genes of interest in their genomes, potyviruses have gained attention due to their polyprotein expression strategy and broad host range. To date, at least eleven different species belonging to the genus have been used for heterologous gene expression in both their natural and experimental hosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!