New models for the viscosity of concentrated suspensions of deformable elastic particles are developed using the differential effective medium approach (DEMA). The models are capable of describing the rheological behavior of un-aggregated suspensions of human red blood cells (RBCs). With the increase in shear rate, a shear-thinning behavior is predicted similar to that observed in the case of un-aggregated suspensions of RBCs. A decrease in relative viscosity and an enhancement of shear-thinning behavior is predicted when either the particle rigidity (elastic modulus) is decreased or the continuous medium viscosity is increased. These predictions are similar to those observed in suspensions of human RBCs. The proposed models are evaluated using experimental data on normal and hardened human RBC suspensions in protein-free saline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9290(03)00067-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!