We investigated the impact of leaf vascular connections on systemically transmitted herbivore-induced gene expression in Nicotiana attenuata. Although systemic signaling is clearly associated with the plant vascular system, few studies consider vascular architecture when measuring systemically induced defenses. N. attenuata is a plant with dispersed phyllotaxis approximating 3/8 in the rosette stage of growth. We mimicked Manduca sexta herbivory by introducing larval regurgitant to wounds produced with a standardized continuous mechanical wounding and investigated mRNA accumulation of genes. Herbivory in N. attenuata induces the expression of genes coding for a proteinase inhibitor protein (PI), threonine deaminase (TD, EC 4.3.1.19), a luminal-binding protein (BiP), and an alpha-dioxygenase (alpha-DOX). We measured the systemic response of sink leaves when orthostichous (growing at an angular distance of 0 degrees) source leaves were treated, and vice versa, and compared it to the systemic response of leaves growing at the maximum angular distance of 180 degrees. Vascular architecture clearly controlled the intensity of systemic mRNA accumulation within the 4-hr time frame of the experiment. In addition, we found signal translocation to be bidirectional, travelling from source to sink as well as from sink to source leaves, which argues against a phloem-based assimilate-linked signal identity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1022833022672 | DOI Listing |
Metabolites
October 2024
Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus . These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the genus, but information from the molecular model species , , and the tree tobacco is limited.
View Article and Find Full Text PDFPlant Physiol
October 2024
Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany.
Pentacyclic triterpenoids, recognized for their natural bioactivity, display complex spatiotemporal accumulation patterns within the ecological model plant Nicotiana attenuata. Despite their ecological importance, the underlying biosynthetic enzymes and functional attributes of triterpenoid synthesis in N. attenuata remain unexplored.
View Article and Find Full Text PDFJ Exp Bot
October 2024
Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Biosynthesis of the phytoalexins scopoletin and scopolin in Nicotiana species is regulated by upstream signals including jasmonate (JA), ethylene (ET), and NaWRKY3 in response to the necrotrophic fungus Alternaria alternata, which causes brown spot disease. However, how these signals are coordinated to regulate these phytoalexins remains unknown. By analyzing RNA sequencing data and RNAi, we identified NaERF1B-like (NaERF1B-L) as a key player in Nicotiana attenuata during A.
View Article and Find Full Text PDFNew Phytol
June 2024
Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland.
Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation.
View Article and Find Full Text PDFThe assembly of genomes from pooled samples of genetically heterogenous samples of conspecifics remains challenging. In this study, we show that high-quality genome assemblies can be produced from samples of multiple wild-caught individuals. We sequenced DNA extracted from a pooled sample of conspecific herbivorous insects (Hemiptera: Miridae: ) acquired from a greenhouse infestation in Tucson, Arizona (in the range of 30-100 individuals; 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!