Background: Lipopolysaccharide (LPS)-stimulated macrophages (Mphi) produce excess tumor necrosis factor (TNF), and the direct inhibition of IkappaB phosphorylation and its subsequent separation from the nuclear factor kappaB (NFkappaB)-IkappaB complex has been experimentally supported as a mechanism for omega-3 fatty acid (FA) inhibition of this TNF response. However, TNF production is a "late" event in the LPS-induced Mpsi inflammatory cascade, and in addition to NFkappaB-associated pathways, a separate transcription factor, activator protein-1 (AP-1) is an important pathway for Mpsi proinflammatory cytokine production. The mitogen-activated protein kinase (MAPK) cascade regulates both NFkappaB-IkappaB--and AP-1-associated gene transcription through several cross-amplifying phosphorylation kinases, specifically p44/42 [ie, extracellular signal-regulated kinase (ERK) 1/2], p38, and c//jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK). The activation of these kinases occurs in the proximal MAPK cascade and activation modulates AP-1 activation. In this set of experiments, it was hypothesized that inhibition of MAPK signaling phosphorylation kinases by omega-3 fatty acids in a model of LPS-stimulated Mphi(s) would alter the activation of the proinflammatory cytokine transcription factor AP-1.
Methods: RAW 264.7 cells were pretreated with a sterile, commercially available, pharmaceutical grade omega-3 FA emulsion, equivalent grade omega-6 FA emulsion, or Dulbecco's modified eagles medium (media alone) for 4 hours. Cells were washed twice and exposed to LPS for 15 minutes. Total cell lysates were collected, and both total and phosphorylated portions of the p44/42, p38, and JNK/SAPK proteins were determined by Western blotting. AP-1 nuclear translocation was determined by electromobility shift assay.
Results: Phosphorylation of p44/42 and JNK/SAPK proteins of the MAPK pathways in LPS-stimulated Mpsi(s) was significantly reduced by omega-3 FA treatment compared with Mphi treated with omega-6 FA or media alone. In contrast, phosphorylation of p38 was not inhibited in the presence of omega-3 or (omega-6 FA treatment compared with media alone. Omega-3 FA pretreatment inhibited AP-1 activation.
Conclusions: omega-3 FA inhibited p44/42 and JNK/SAPK phosphorylation; however, p38 remained unchanged. Phosphorylation of p44/42 and JNK/SAPK are the immediate prior steps in AP-1 activation. Attenuated AP-1 activation and subsequent attenuated gene-level proinflammatory cytokine elaboration is anticipated after inhibition of these MAPK intermediates and is confirmed by the reduction in AP-1 activity. These results provide further evidence for the transcriptional level regulation in the elaboration of proinflammatory cytokines by omega-3 FA in this Mphi model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0148607103027003176 | DOI Listing |
Food Funct
January 2025
Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
Front Mol Neurosci
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!