A full-length copy of the retrotransposon GATE was identified as an insertion in the tandemly repeated, heterochromatic, Stellate genes, which are expressed in the testis of Drosophila melanogaster. Sequencing of this heterochromatic GATE copy revealed that it is closely related to the BEL retrotransposon, a representative of the recently defined BEL-like group of LTR retrotransposons. This copy contains identical LTRs, indicating that the insertion is a recent event. By contrast, the euchromatic part of the D. melanogaster genome contains only profoundly damaged GATE copies or fragments of the transposon. The preferential localization of GATE sequences in heterochromatin was confirmed for the other species in the melanogaster subgroup. The level of GATE expression is dramatically increased in ovaries, but not in testes, of spn-E(1) homozygous flies. We speculate that spn-E is involved in the silencing of GATE via an RNA interference mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-003-0827-1 | DOI Listing |
Heliyon
January 2025
Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa.
Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
Memory consolidation requires rapid energy supply to neurons. In a recent study, Francés et al. revealed the signal by which a neuron commands glia to limit fatty acid synthesis in favor of metabolite export during memory formation in Drosophila melanogaster.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Emory University, Atlanta, GA 30322.
To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.
View Article and Find Full Text PDFNat Sci Sleep
January 2025
Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Purpose: Two previously proposed modelling approaches to explain the bimodal pattern of activity and/or sleep in are based on 1) the concept of morning and evening oscillators underlying the peaks of activity in the morning and evening, respectively, and 2) the concept of two cycles of buildup and decay of sleep pressure, gated only by the circadian oscillator. Previously, we simulated 24-h alertness-sleepiness curves in humans using a model postulating the circadian modulation of the buildup and decay phases of two (wake and sleep) homeostatic processes. Here, we tested whether a similar model could be applied to simulate the bimodal 24-h rhythm of fly locomotor activity and sleep.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!