A full-length copy of the retrotransposon GATE was identified as an insertion in the tandemly repeated, heterochromatic, Stellate genes, which are expressed in the testis of Drosophila melanogaster. Sequencing of this heterochromatic GATE copy revealed that it is closely related to the BEL retrotransposon, a representative of the recently defined BEL-like group of LTR retrotransposons. This copy contains identical LTRs, indicating that the insertion is a recent event. By contrast, the euchromatic part of the D. melanogaster genome contains only profoundly damaged GATE copies or fragments of the transposon. The preferential localization of GATE sequences in heterochromatin was confirmed for the other species in the melanogaster subgroup. The level of GATE expression is dramatically increased in ovaries, but not in testes, of spn-E(1) homozygous flies. We speculate that spn-E is involved in the silencing of GATE via an RNA interference mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-003-0827-1DOI Listing

Publication Analysis

Top Keywords

drosophila melanogaster
8
gate
7
gate retrotransposon
4
retrotransposon drosophila
4
melanogaster
4
melanogaster mobility
4
mobility heterochromatin
4
heterochromatin aspects
4
aspects expression
4
expression germline
4

Similar Publications

Animal models in biomedical research: Relevance of .

Heliyon

January 2025

Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa.

Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible.

View Article and Find Full Text PDF

Coordinating the energetic strategy of glia and neurons for memory.

Trends Neurosci

January 2025

Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Memory consolidation requires rapid energy supply to neurons. In a recent study, Francés et al. revealed the signal by which a neuron commands glia to limit fatty acid synthesis in favor of metabolite export during memory formation in Drosophila melanogaster.

View Article and Find Full Text PDF

To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.

View Article and Find Full Text PDF

In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.

View Article and Find Full Text PDF

Purpose: Two previously proposed modelling approaches to explain the bimodal pattern of activity and/or sleep in are based on 1) the concept of morning and evening oscillators underlying the peaks of activity in the morning and evening, respectively, and 2) the concept of two cycles of buildup and decay of sleep pressure, gated only by the circadian oscillator. Previously, we simulated 24-h alertness-sleepiness curves in humans using a model postulating the circadian modulation of the buildup and decay phases of two (wake and sleep) homeostatic processes. Here, we tested whether a similar model could be applied to simulate the bimodal 24-h rhythm of fly locomotor activity and sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!