We recently presented a unique, chemically-induced rat model of hemolytic anemia and disseminated thrombosis. In this 2-butoxyethanol (BE)-induced model the organs developing infarction are comparable to those seen in human diseases, characterized by hemolysis and thrombosis (e.g., thalassemia, sickle-cell disease, paroxysmal nocturnal hemoglobinuria, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, and hemolytic uremic syndrome). Red blood cells (RBCs) have special flow properties, namely, self-aggregability, deformability, and potential adherence to endothelial cells (ECs) of the blood vessel wall, which are essential for adequate blood flow and tissue perfusion; their alteration facilitates circulatory disorders. To examine the possible contribution of alterations in RBC flow properties to the observed thrombosis in the present investigation we determined the BE-induced changes in adherence, aggregability, and deformability of RBCs from male and female Fischer F344 rats exposed to two, three, or four daily doses of BE at 250 mg BE/kg body weight. Control animals were treated with the vehicle alone. Blood was taken on days 2, 3, 4, and 29. The administration of BE did not affect the RBCs aggregability but markedly enhanced their adherence to extracellular matrix; such enhancement was correlated with adherence to cultured ECs. RBC/EC interaction has been shown to be a potent catalyst of vascular occlusion in hemolytic hemoglobinopathies; thus the enhanced RBC adherence to EC is a likely mechanism by which thrombosis and organ infarct are induced in BE-treated rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-003-0471-x | DOI Listing |
J Vis Exp
January 2025
Barts Cancer Institute, Queen Mary University of London;
Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China.
Hemolytic anemia (HA) is characterized by massive destruction of red blood cells (RBCs) and insufficient oxygen supply, which can lead to shock, organ failure, even death. Recent studies have preliminarily demonstrated the therapeutic effectiveness of whole blood exchange (WBE) in the management of acute hemolytic anemia and exhibited potential for reducing the duration of corticosteroid treatment, while the underlying mechanism of WBE therapy was not investigated in preclinical study. Hence, we investigate the therapeutic mechanisms of WBE in HA through established continued WBE therapy in rats creatively.
View Article and Find Full Text PDFAnesthesiology
January 2025
Department of Anesthesiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
Background: Tranexamic acid is an anti-fibrinolytic agent routinely used during hip and knee joint replacement surgery to minimize bleeding. Chronic kidney disease is a common chronic health problem seen among adults requiring major arthroplasty surgery. Tranexamic acid is renally cleared and may accumulate in chronic kidney disease.
View Article and Find Full Text PDFHematology
December 2025
Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand.
Background: Hemoglobin (Hb) Hekinan is a prevalent α-globin variant frequently missed in thalassemia screening centers using high-performance liquid chromatography (HPLC) or capillary electrophoresis. This study aims to investigate the hematological and molecular characteristics of Hb Hekinan in a large cohort.
Methods: Hb variants were identified using isoelectric focusing (IEF) and HPLC.
The severity of COVID 19 symptoms has a direct correlation with lymphopenia, affecting natural killer (NK) cells. SARS-CoV-2 specific "memory" NK cells obtained from convalescent donors can be used as cell immunotherapy. In 2022 a phase I, dose-escalation, single center clinical trial was conducted to evaluate the safety and feasibility of the infusion of CD3/CD56 NK cells against moderate/severe cases of COVID-19 (NCT04578210).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!