Detergent extracts of microsomal fractions from Saprolegnia monoïca and blackberry (Rubus fruticosus) cells were incubated with UDP-glucose to yield in vitro (1-->3)-beta-d-glucans. The insoluble products were analyzed by conventional and cryo transmission electron microscopy, X-ray diffraction, and (13)C CP/MAS NMR, and their molecular weights were determined by light scattering experiments. All the products were microfibrillar, but for the detergent extracts from S. monoïca, important morphological differences were observed when the pH of the synthesizing medium was modified. At pH 6, the product had a weight average degree of polymerization () exceeding 20 000 and consisted of endless ribbon-like microfibrils. The microfibrils obtained at pH 9 had a length of only 200-300 nm, and their was approximately 5000. Of all the in vitro (1-->3)-beta-d-glucans, the one from R. fruticosus had the shortest length and the smallest. Crystallographic and spectroscopic data showed that the three in vitro samples consisted of triple helices of (1-->3)-beta-d-glucans and contained substantial amounts of water molecules in their structure, the shortest microfibrils being more hydrated. In addition, the long microfibrils from S. monoïca synthesized at pH 6 were more resistant toward the action of an endo-(1-->3)-beta-d-glucanase than the shorter ones obtained at pH 9. These results are discussed in terms of molecular biosynthetic mechanisms of fungal and plant (1-->3)-beta-d-glucans, and in relation with the possible existence of several (1-->3)-beta-d-glucan synthases in a given organism. The interpretation and discussion of these observations integrate the current knowledge of the structure and function of (1-->3)-beta-d-glucans.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0340550DOI Listing

Publication Analysis

Top Keywords

saprolegnia monoïca
8
blackberry rubus
8
rubus fruticosus
8
detergent extracts
8
vitro 1-->3-beta-d-glucans
8
1-->3-beta-d-glucans
6
vitro
5
structural morphological
4
morphological diversity
4
diversity 1-->3-beta-d-glucans
4

Similar Publications

Effects of Saprolegnia parasitica on pathological damage and metabolism of Epithelioma papulosum cyprini cell.

Dev Comp Immunol

January 2025

National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China. Electronic address:

Saprolegniasis is a common fungal disease in aquaculture. It will form white flocculent hyphae on the skin of fish, and the hyphae may grow inward and penetrate into muscle tissue, which will reduce the immunity of the body and eventually lead to death. However, there are still some gaps in the mechanism of the fish body surface against the invasion of Saprolegnia.

View Article and Find Full Text PDF

Saprolegniasis is one of the most dangerous fungal diseases of fish, causing significant mortality in fish hatcheries and young ones. The present study aimed to isolate and characterize the causative fungus from fingerlings of Pangasianodon hypophthalmus cultured intensively in freshwater cages in Indian reservoirs and to determine minimum inhibitory concentrations of different antifungal compounds against the fungal hyphae and zoospores. The fungal isolates grown on potato dextrose agar showed an abundance of gemmae, elongated mycelia, non-septate hyphae, primary zoospores, mature zoosporangia with numerous zoospores, cysts with bundles of long hairs and were further identified as Saprolegnia parasitica following PCR amplification and sequencing of internal transcribed spacer region.

View Article and Find Full Text PDF

The pejerrey (Odontesthes bonariensis) is a key species for recreational and commercial fisheries in Argentina and holds significant aquaculture potential. It has been introduced to various countries worldwide, including Japan, where intensive aquaculture has developed. However, infectious diseases present major challenges to its cultivation, as pejerrey is susceptible to diverse pathogens, including bacteria, fungi and parasites.

View Article and Find Full Text PDF

Correlation Between Effector Gene Expression Targeted by lncRNAs in the Oomycete Fish Pathogen, Saprolegnia parasitica.

Mar Biotechnol (NY)

November 2024

State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.

Saprolegniasis caused by Saprolegnia parasitica leads to significant economic losses in the aquaculture industry worldwide. Effector proteins secreted by pathogens are key molecules involved in their pathogenicity and long non-coding lncRNAs (lncRNAs) act as regulators in these processes. However, little is known about the lncRNAs and effector proteins in S.

View Article and Find Full Text PDF

Structural damage and organelle destruction: Mechanisms of pseudolaric acid B against S. parasitica.

Fish Shellfish Immunol

November 2024

National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China. Electronic address:

Article Synopsis
  • - This study explored how Chinese herbs can be used to combat aquatic diseases, focusing on their antibacterial properties against the pathogen Saprolegnia parasitica.
  • - Cortex pseudolaricis was found to be effective with a minimum inhibitory concentration (MIC) of 0.98 mg/mL, mainly due to its active compound, pseudolaric acid B (PAB), which had an even lower MIC of 0.03 mg/mL.
  • - PAB damages the cell structure of S. parasitica by disrupting metabolic processes and leading to increased energy depletion, ultimately compromising vital functions and potentially causing cell death.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!