It was possible to quantitate the terminal oxidase(s) reaction using bacterial resting-cell suspensions and demonstrate the usefulness of this reaction for taxonomic purposes. Resting-cell suspensions of physiologically diverse bacteria were examined for their capabilities of oxidizing N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) using a manometric assay. For organisms having this capability, it was possible to calculate the conventional TMPD oxidase Q(O2) value (microliters of O2 consumed per hour per milligram [dry weight]). All cultures were grown heterotrophically at 30 C, under identical nutritional conditions, and were harvested at the late-logarithmic growth phase. The TMPD oxidase Q(O2) values showed perfect correlation with the Kovacs oxidase test and, in addition, it was possible to define quantitatively that point which separated oxidase-positive from oxidase-negative bacteria. Oxidase-negative bacteria exhibited a TMPD oxidase Q(O2) value (after correcting for the endogenous by substraction) of less than or equal 33 and had an uncorrected TMPD/endogenous ratio of less than or equal 5. The TMPD oxidase Q(O2) values were also correlated with the data obtained for the Hugh-Leifson Oxferm test. In general, bacteria that exhibited a respiratory mechanism had high TMPD oxidase values, whereas fermentative organsims had low TMPD oxidase activity. All exceptions to this are noted. This quantitative study also demonstrated that organisms that (i) lack a type c cytochrome, or (ii) lack a cytochrome-containing electron transport system, like the lactic acid bacteria, exhibited low or negligible TMPD oxidase Q(O2) values. From the 79 bacterial species (36 genera) examined, it appears that this quantitative oxidase test has taxonomic value that can differentiate the oxidative relationships between bacteria at the subspecies, species, and genera levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC291174PMC
http://dx.doi.org/10.1128/aem.31.5.668-679.1976DOI Listing

Publication Analysis

Top Keywords

tmpd oxidase
28
oxidase qo2
20
oxidase test
12
qo2 values
12
bacteria exhibited
12
oxidase
9
quantitative oxidase
8
resting-cell suspensions
8
tmpd
8
oxidase-negative bacteria
8

Similar Publications

To clarify the precise subunit composition of the respiratory supercomplex of Corynebacterium glutamicum, several wash conditions were examined. MEGA (9 + 10) wash-buffer (0.5%) was used for this purpose and two-step column chromatography was performed.

View Article and Find Full Text PDF

Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress.

Microorganisms

December 2019

Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.

is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined.

View Article and Find Full Text PDF

The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions.

View Article and Find Full Text PDF

Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor.

View Article and Find Full Text PDF

Cardiolipin is associated with the terminal oxidase of an extremely halophilic archaeon.

Biochem Biophys Res Commun

March 2007

Department of Medical Biochemistry, Medical Biology and Medical Physics, University of Bari, Bari, Italy.

Membranes having an a high content of cardiolipin were isolated from an extremely halophilic archaeon Halorubrum sp. Absorbance difference spectra of detergent-solubilized plasma membranes reduced by dithionite suggested the presence of b-type cytochromes. Non-denaturing gel electrophoresis revealed only one fraction having TMPD-oxidase activity in which cardiolipin was the major lipid component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!