Differential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice.

Am J Physiol Lung Cell Mol Physiol

Div. of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Rm. 4B74, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.

Published: September 2003

Patients with acute respiratory distress syndrome are at increased risk for developing multiorgan system dysfunction. The goal of this study was to establish an in vivo murine model to assess the differential effects of ventilation-protective strategies on the development of acute lung injury and systemic organ inflammation. C57B/6 mice were randomized to mechanical ventilation (MV) with conventional, high (17 ml/kg) or protective, low (6 ml/kg) tidal volume (VT) after intratracheal hydrochloric acid or no intervention. Mean arterial pressure was continuously monitored during MV and did not differ between groups. After 4 h, lung injury was assessed by measurement of wet/dry lung weight, lung lavage protein concentration and cell count, and histology. Concentration of IL-6, TNF-alpha, VEGF, and VEGF receptor-2 (VEGFR2) was measured in lung, liver, kidney, and heart. Results were compared with control, spontaneously breathing mice. Lung injury and altered pulmonary cytokine expression were not detected after MV of healthy mice with low or high VT. Although MV did not significantly alter IL-6 or TNF-alpha in systemic organs, VEGF concentration significantly increased in liver and kidney. After acid aspiration, mice ventilated with high VT manifested lung injury and increased IL-6 and VEGFR2 in lung, liver, and kidney, whereas VEGF increased only in liver and kidney. MV with low VT after acid aspiration attenuated lung injury, both IL-6 and VEGFR2 expression in lung and systemic organs, and hepatic, but not renal, increased VEGF. Our data suggest that MV strategy has differential effects on systemic inflammatory changes and thus may selectively predispose to systemic organ dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00044.2003DOI Listing

Publication Analysis

Top Keywords

lung injury
24
liver kidney
16
differential effects
12
systemic organ
12
lung
11
injury systemic
8
organ inflammation
8
il-6 tnf-alpha
8
lung liver
8
systemic organs
8

Similar Publications

Nanoparticles of neodymium oxide (NPs-NdO) can induce respiratory-related diseases, including lung tissue injury when entering the organism through the respiratory tract. However, it is currently unclear whether they can induce epithelial-mesenchymal transition (EMT) in lung tissue and the related mechanisms. In this study, we investigated the function of circ_009773 in the process of EMT induced by NPs-NdO in lung tissue from in vivo as well as in vitro experiments.

View Article and Find Full Text PDF

Integrative Analysis of Pharmacology and Transcriptomics Predicts Resveratrol Will Ameliorate Microplastics-Induced Lung Damage by Targeting Ccl2 and Esr1.

Toxics

December 2024

Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China.

Background: Microplastics (MPs) are ubiquitous on earth, posing a growing threat to human health. Previous studies have shown that the lung is a primary organ for MPs exposure. Resveratrol (RES) is a common dietary polyphenol that exhibits anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

Aerosol Inhalation of Luteolin-7-O-Glucuronide Exerts Anti-Inflammatory Effects by Inhibiting NLRP3 Inflammasome Activation.

Pharmaceuticals (Basel)

December 2024

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing 100700, China.

Luteolin-7-O-glucuronide (L7Gn) is a flavonoid isolated from numerous traditional Chinese herbal medicines that exerts anti-inflammatory effects. Previous research has revealed that aerosol inhalation is the most straightforward way of administration for the delivery of respiratory agents. Thus far, the impact of aerosol inhalation of L7Gn on lung inflammation and the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Capsaicin is commonly used as a flavoring and a riot control agent. However, long-term exposure or high doses can cause acute lung injury in military and police personnel. The mechanisms underlying capsaicin-induced pulmonary toxicity remain unclear.

View Article and Find Full Text PDF

Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement.

Pharmaceuticals (Basel)

November 2024

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.

: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!