Gas-based contrast agents (CAs) increase ultrasound (US)-induced bioeffects, presumably via an inertial cavitation (IC) mechanism. The relationship between IC dose (ICD) (cumulated root mean squared [RMS] broadband noise amplitude; frequency domain) and 1.1-MHz US-induced hemolysis in whole human blood was explored with Optison; the hypothesis was that hemolysis would correlate with ICD. Four experimental series were conducted, with variable: 1. peak negative acoustic pressure (P-), 2. Optison concentration, 3. pulse duration and 4. total exposure duration and Optison concentration. P- thresholds for hemolysis and ICD were approximately 0.5 MPa. ICD and hemolysis were detected at Optison concentrations >/= 0.01 V%, and with pulse durations as low as four or two cycles, respectively. Hemolysis and ICD evolved as functions of time and Optison concentration; final hemolysis and ICD values depended on initial Optison concentration, but initial rates of change did not. Within series, hemolysis was significantly correlated with ICD; across series, the correlation was significant at p < 0.001.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0301-5629(03)00013-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!