Conditionally immortalized cell line of inducible metanephric mesenchyme.

Kidney Int

Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, USA.

Published: June 2003

Background: The mesenchymal-epithelial conversion of metanephric mesenchyme (MM) in the formation of nephronic tubules has long served as a paradigm for inductive signaling in morphogenesis. However, the mechanisms underlying this differentiation have remained an enigma due to insufficient numbers of primary mesenchymal cells that must be isolated manually from animal embryos. To overcome this problem, we have established a conditionally immortalized cell line, the rat-inducible metanephric mesenchyme (RIMM-18) by transfection of primary mesenchymal cells with a vector, encoding an estradiol-dependent E1A-ER fusion protein.

Methods: Reverse transcription-polymerase chain reaction (RT-PCR), luciferase reporter assay, electrophoretic mobility shift assay, immunocytochemical, and immunohistochemical stainings were used to characterize the established cell line.

Results: We demonstrate that in the presence of estradiol, the RIMM-18 cell line proliferates continuously, maintaining mesenchymal characteristics for over 40 passages. These cells are vimentin-positive and cytokeratin-negative. Under inductive conditions in the absence of estradiol, they are responsive to a number of cytokines, which are established inducers of mesenchymal cells in vivo and in vitro [i.e., fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and transforming growth factor-beta 2 (TGF-beta 2)]. We show the presence in RIMM-18 cells of specific protein markers and functionally active signaling pathways required for induction of tubule formation in MM. Furthermore, induced RIMM-18 cells change morphology, acquiring epithelial-like features, and begin to express epithelial markers (e.g., E-cadherin, cytokeratin, gamma-glutamyl-transpeptidase, and secreted frizzled-related protein 2 (sFRP2).

Conclusion: This preliminary characterization of the RIMM-18 cell line suggests that it will be useful in the study of biochemical and molecular mechanisms of nephronic development and, possibly, of some types of renal cancer such as Wilms' tumor, which caricatures the normal process of kidney development.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1755.2003.00010.xDOI Listing

Publication Analysis

Top Keywords

metanephric mesenchyme
12
mesenchymal cells
12
conditionally immortalized
8
immortalized cell
8
primary mesenchymal
8
rimm-18 cell
8
rimm-18 cells
8
cells
6
cell
5
rimm-18
5

Similar Publications

Growth arrest specific 1 (GAS1) is a key regulator of mammalian embryogenesis, best known for its role in hedgehog (HH) signaling, but with additional described roles in the FGF, RET, and NOTCH pathways. Previous work indicated a later role for GAS1 in kidney development through FGF pathway modulation. Here, we demonstrate that GAS1 is essential for both mesonephrogenesis and metanephrogenesis - most notably, Gas1 deletion in mice results in renal agenesis in a genetic background-dependent fashion.

View Article and Find Full Text PDF

Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Foxd1+ stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.

View Article and Find Full Text PDF

Our study examines the immunoexpression patterns of Megalin, Cubilin, Caveolin-1, Gipc1 and Dab2IP in the embryonic development (E) and postnatal (P) mouse kidney, with a focus on differentiating patterns between wild-type (wt) and , () mice. Immunofluorescence revealed raised immunoexpression of receptors Megalin and Cubilin at the ampulla/collecting ducts and convoluted tubules across all developmental stages, with the most prominent immunoexpression observed in the convoluted tubules and the parietal epithelium of the Bowman's capsule. Quantitative analysis showed a higher percentage of Megalin and Cubilin in wt compared to mice at E13.

View Article and Find Full Text PDF

Unlabelled: Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Foxd1+ stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.

View Article and Find Full Text PDF

Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells.

Curr Opin Cell Biol

February 2024

Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. Electronic address:

Article Synopsis
  • During kidney development in embryos, the ureteric bud and metanephric mesenchyme interact to promote kidney formation through gene regulation and signaling pathways.
  • Researchers are now able to create kidney organoids from human pluripotent stem cells, using bioengineering techniques to create controlled environments for their growth.
  • Recent advancements, including combining these organoids with organ-on-chip technology, aim to improve models for drug development and understanding kidney diseases, potentially leading to new therapeutic options.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!