A single dose vaccine formulation which induces both humoral and cell-mediated immune responses over a prolonged period would provide a potent weapon against infectious disease. We have used a water-in-oil-in-oil, solvent evaporation method for generating poly epsilon-caprolactone microparticles and tested their ability to induce an immune response against the model antigen ovalbumin. We hypothesized that the initial release of antigen from the surface of the poly epsilon-caprolactone microparticles would act as the priming dose and that the delayed release over the following months, due to diffusion from or break-down of the microparticles, would act as a boost to the immune response. Ovalbumin encapsulated in the poly epsilon-caprolactone microparticles was able to induce both antibody and cell-mediated immune responses. However our results suggest that the spontaneous release had little effect on the immune response. Despite this the response was maintained for at least 8 months following a single immunization. Both humoral and cell-mediated immune responses were induced in mice. This simple method of vaccine formulation offers a cost-efficient way to deliver antigen in a single dose to the immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-1711.2003.01155.xDOI Listing

Publication Analysis

Top Keywords

immune response
16
poly epsilon-caprolactone
16
epsilon-caprolactone microparticles
16
cell-mediated immune
12
immune responses
12
single dose
8
vaccine formulation
8
humoral cell-mediated
8
immune
7
response
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!