Objective: To evaluate the long-term outcome of Polytetrafluoroethylene (PTFE) conduit in nerve repair and to provide more evidence in view of its potential application to achieve a satisfactory functional recovery in clinical settings.

Methods: Thirty-six Wistar rats had their right sciatic nerve transected and were repaired with either conventional microsuture technique (Control group, n=18) or a PTFE conduit with a gap of 5 mm left between the nerve stumps (PTFE group, n=18). At 6 and 9 months after the operation, electrophysiological assessment and measurement of gastrocnemius muscle weight were conducted and morphology of the regenerated nerves were studied with image analysis.

Results: At 6 months postoperatively, the nerve conduction velocity recovered to 60.86% and 54.36% (P<0.05), and the gastrocnemius muscle weight recovered to 50.89% and 46.11% (P>0.05) in the Control group and the PTFE group respectively. At 9 months postoperatively, the recovery rate was 65.99% and 58.79% for NCV (P>0.05), and 52.56% and 47.89% for gastrocnemius muscle weight (P>0.05) in the Control group and the PTFE group respectively. Regenerated nerve fibers in the PTFE group had a regular round shape with no fragmentation, wrinkling or splitting of the myelin sheath. Image analysis revealed that the ratio of the myelin area to the total fiber area was larger at 9 months than at 6 months in both groups (P<0.01).

Conclusions: Microporous PTFE conduit may be an alternative for nerve repair allowing of guided nerve regeneration and functional recovery with no obvious adverse effect at long-term.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ptfe group
16
control group
12
ptfe conduit
8
group n=18
8
gastrocnemius muscle
8
muscle weight
8
months postoperatively
8
group ptfe
8
group
7
nerve
6

Similar Publications

Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces.

View Article and Find Full Text PDF

Imidazolium-Based Ionic Liquid Exhibiting Dual Hydrophilic and Oleophobic Properties without Polar End Groups.

Langmuir

January 2025

Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

Simultaneously hydrophilic and oleophobic surfaces offer substantial advantages for applications such as antifogging, self-cleaning, and oil-water separation. It remains challenging to engineer such surfaces without requiring polar functional groups. This study introduces HFIL, a novel ionic liquid (IL) coating that achieves simultaneous hydrophilic and oleophobic properties via a one-step dip-coating process without relying on polar functional groups.

View Article and Find Full Text PDF

Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.

Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.

View Article and Find Full Text PDF

Statement Of Problem: Excess cement in implant-supported restorations can lead to peri-implant diseases, and its removal remains a clinical challenge. The optimum method of minimizing excess cement is unclear.

Purpose: The purpose of this in vitro study was to compare 3 cementation techniques and 3 cement types and measure excess cement.

View Article and Find Full Text PDF

Assessing correlation between different temporary restorative materials for microleakage following endodontic treatment: an in-vitro study.

BMC Oral Health

December 2024

Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.

Background: Coronal microleakage, the passage of fluids and bacteria through the interface between the temporary restoration and the tooth structure, can potentially result in endodontic treatment failure.

Purpose: This study evaluated and compared the sealing efficacy of various temporary restorative materials utilized during endodontic procedures.

Methods: All seventy premolar teeth were extracted, measured, and restored, except for the negative control group, where the teeth were left whole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!