Two clinical trials are currently running at the Finnish dedicated boron neutron capture therapy (BNCT) facility. Between May 1999 and December 2001, 18 patients with supratentorial glioblastoma were treated with boronophenylalanine (BPA)-based BNCT within a context of a prospective clinical trial (protocol P-01). All patients underwent prior surgery, but none had received conventional radiotherapy or cancer chemotherapy before BNCT. BPA-fructose was given as 2-h infusion at BPA-dosages ranging from 290 to 400 mg/kg prior to neutron beam irradiation, which was given as a single fraction from two fields. The average planning target volume dose ranged from 30 to 61 Gy (W), and the average normal brain dose from 3 to 6 Gy (W). The treatment was generally well tolerated, and none of the patients have died during the first months following BNCT. The estimated 1-year overall survival is 61%. In another trial (protocol P-03), three patients with recurring or progressing glioblastoma following surgery and conventional cranial radiotherapy to 50-60 Gy, were treated with BPA-based BNCT using the BPA dosage of 290 mg/kg. The average planning target dose in these patients was 25-29 Gy (W), and the average whole brain dose 2-3 Gy (W). All three patients tolerated brain reirradiation with BNCT, and none died during the first three months following BNCT. We conclude that BPA-based BNCT has been relatively well tolerated both in previously irradiated and unirradiated glioblastoma patients. Efficacy comparisons with conventional photon radiation are difficult due to patient selection and confounding factors such as other treatments given, but the results support continuation of clinical research on BPA-based BNCT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02699939DOI Listing

Publication Analysis

Top Keywords

bpa-based bnct
16
bnct
9
boron neutron
8
neutron capture
8
capture therapy
8
clinical trials
8
trial protocol
8
average planning
8
planning target
8
brain dose
8

Similar Publications

Boron neutron capture therapy (BNCT) is radiotherapy in which a nuclear reaction between boron-10 (B) in tumor cells and neutrons produces alpha particles and recoiling Li nuclei with an extremely short range, leading to the destruction of the tumor cells. Although the neutron source has traditionally been a nuclear reactor, accelerators to generate neutron beams have been developed and commercialized. Therefore, this treatment will become more widespread.

View Article and Find Full Text PDF

4-Iodobenzonitrile as a fluorogenic derivatization reagent for chromatographic analysis of L-p-boronophenylalanine in whole blood samples using Suzuki coupling reaction.

Anal Chim Acta

July 2024

Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan. Electronic address:

Background: L-p-Boronophehylalanine (BPA) is used in boron neutron capture therapy (BNCT), which is a novel selective cancer radiotherapy technique. It is important to measure BPA levels in human blood for effective radiotherapy; a prompt gamma-ray spectrometer, ICP-AES, and ICP-MS have been used for this purpose. However, these methods require sophisticated and expensive apparatuses as well as experienced analysts.

View Article and Find Full Text PDF

Background And Objective: Boron neutron capture therapy (BNCT) is a binary cancer treatment that combines boron administration and neutron irradiation. The tumor cells take up the boron compound and the subsequent neutron irradiation results in a nuclear fission reaction caused by the neutron capture reaction of the boron nuclei. This produces highly cytocidal heavy particles, leading to the destruction of tumor cells.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is a binary cancer therapy that involves boron administration and neutron irradiation. The nuclear reaction caused by the interaction of boron atom and neutron produces heavy particles with highly cytocidal effects and destruct tumor cells, which uptake the boron drug. p-Boronophenylalanine (BPA), an amino acid derivative, is used in BNCT.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is a treatment modality for cancer that involves radiations of different qualities. A formalism that proved suitable to compute doses in photon-equivalent units is the photon isoeffective dose model. This study addresses the question whether considering in vitro or in vivo radiobiological studies to determine the parameters involved in photon isoeffective dose calculations affects the consistency of the model predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!