Embryo axes isolated from germinating lupine seeds were cultivated in vitro for 24-96 h over media containing either 60 mmol/L sucrose or no sucrose. Ultrastructural studies showed that large vacuoles were accumulating in a central region of primary parenchyma cells in sucrose starved lupine embryo axes, whereas cytoplasm along with organelles were forced to a periphery of the cells. We suggest that the autolysis of cytoplasmic proteins contributes to the accumulation of the vacuoles and this suggestion is consistent with the results of the characterisation of protein content. The level of cytosolic proteins was reduced by 50% and the activity of cytosolic marker enzyme, PEP carboxylase, was reduced by 46% in starved embryos as compared to control. The mitochondria from starved tissues were not degraded. The level of mitochondrial proteins was reduced by only 10% and the activity of mitochondrial NAD-isocitrate dehydrogenase decreased by 8% as a result of starvation. As demonstrated by the results of Percoll density gradient centrifugation, sucrose starvation caused an increase of 49% in many of the higher density mitochondria fractions, whereas many of the lower density mitochondria fractions were decreased by 33%. The samples of mitochondria from starved embryo axes were determined to have higher respiration activity in the presence of glutamate and malate as compared to control samples. EPR-based analyses of free radicals showed the presence of free radicals with a signal at g = 2.0060 in embryo axes. The level of the radical was two times higher in sucrose-starved embryo axes than in control (the level of this radical increased in senescing plant tissues as well). The results of EPR-based quantitation of Mn2+ ions revealed that the level was a few times higher in starved material than in control. Starved embryo axes, however, do possess a number of adaptive mechanisms protecting them from oxidative damage. Densitometric analyses of gels revealed an increase in the activity of SOD in sugar-starved embryos, whereas CAT and POX activities were lower in axes grown without sucrose as compared to control. Superoxide dismutase, catalase and peroxidase zymogram analyses showed that synthesis of new isoforms was not induced by sugar starvation. An accumulation of phytoferritin was found in plastids of sucrose starved embryos. These results are discussed in relation to the metabolic changes observed in senescing plant tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0176-1617-00696DOI Listing

Publication Analysis

Top Keywords

embryo axes
28
compared control
12
lupine embryo
8
axes
8
sugar starvation
8
sucrose starved
8
proteins reduced
8
starved embryos
8
mitochondria starved
8
density mitochondria
8

Similar Publications

Multiplexed transcriptomic analyzes of the plant embryonic hourglass.

Nat Commun

January 2025

School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.

Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.

View Article and Find Full Text PDF

Comments on the Hox timer and related issues.

Cells Dev

December 2024

Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

2024 not only marked the 100th anniversary of the discovery of the organizer by Hilde Pröscholdt-Mangold and Hans Spemann, but also the 40th anniversary of the discovery of the homeobox, a DNA region encoding a DNA binding peptide present in several transcription factors of critical importance for the gastrulating embryo. In particular, this sequence is found in the 39 members of the amniote Hox gene family, a series of genes activated in mid-gastrulation and involved in organizing morphologies along the extending anterior to posterior (AP) body axis. Over the past 30 years, the study of their coordinated regulation in various contexts has progressively revealed their surprising regulatory strategies, based on mechanisms acting in-cis, which can translate a linear distribution of series of genes along the chromatin fiber into the proper sequences of morphologies observed along our various body axes.

View Article and Find Full Text PDF

5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype.

View Article and Find Full Text PDF

Stratification of apple seeds in the context of ROS metabolism.

J Plant Physiol

January 2025

Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.

Article Synopsis
  • Apple seeds have deep dormancy, but cold stratification for 40 days can induce uniform germination by altering reactive oxygen species (ROS) levels.
  • During initial stratification, polyamine oxidase boosts ROS production, with catalase activity increasing after 14 days to maintain optimal ROS levels.
  • Extended stratification leads to higher ROS levels, prompting increased phenolic compounds and peroxidase activity, while fluctuations in toxic m-tyrosine levels suggest protective mechanisms in the seed tissue.
View Article and Find Full Text PDF

Two major ligand-receptor signaling axes - endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret - are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!