We used a carrot (Daucus carota L. cv. Saint Valery) cell suspension culture as a simplified model system to study the effects of the allelochemical compound coumarin (1,2 benzopyrone) on cell growth and utilisation of exogenous nitrate, ammonium and carbohydrates. Exposure to micromolar levels of coumarin caused severe inhibition of cell growth starting from the second day of culture onwards. At the same time, the presence of 50 mumol/L coumarin caused accumulation of free amino acids and of ammonium in the cultured cells, and stimulated their glutamine synthetase, glutamate dehydrogenase, glucose-6-phosphate dehydrogenase and phosphoenolpyruvate carboxylase activities. Malate dehydrogenase, on the other hand, was inhibited under the same conditions. These effects were interpreted in terms of the stimulation of protein catabolism and/or interference with protein biosynthesis induced by coumarin. This could have led to a series of compensatory changes in the activities of enzymes linking nitrogen and carbon metabolism. Because coumarin seemed to abolish the exponential phase and to accelerate the onset of the stationary phase of cell growth, we hypothesise that such allelochemical compounds may act in nature as an inhibitor of the cell cycle and/or as a senescence-promoting substance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1078/0176-1617-00867 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.
Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.
Adv Mater
January 2025
Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
Background: Akabane virus (AKAV) is an arthropod-borne virus that causes congenital malformations and neuropathology in cattle and sheep. In South Korea, AKAVs are classified into two main genogroups: K0505 and AKAV-7 strains. The K0505 strain infects pregnant cattle, leading to fetal abnormalities, while the AKAV-7 strain induces encephalomyelitis in post-natal cattle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!