Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Proteomic analysis of the brain is complicated by the need to obtain cells from specific anatomical regions, or nuclei. Laser capture microdissection (LCM) is a technique that is precise enough to dissect single cells within a tissue section, and thus could be useful for isolating specific brain nuclei for analysis. However, we and others have previously demonstrated that histological staining protocols used to guide LCM have detrimental effects on protein separation by two-dimensional electrophoresis (2-DE). Here we describe a new LCM method called navigated LCM. This microdissection method uses fixed but unstained tissue as starting material and thus enables us to avoid artifacts induced by tissue staining. By comparing 2-DE results obtained from fixed, unstained LCM brain tissue samples to those obtained from manually dissected samples, we demonstrated that this microdissection process gave similar protein recovery rates and similar resolution of protein spots on 2-DE gels. Moreover, matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis of selected spots from gels derived from control and fixed, LCM samples revealed that the fixation-LCM process had no effect on protein identification. Navigated LCM of tissue sections is therefore a practical and powerful method for performing proteomic studies in specifically defined brain regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.200300398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!