The release of cytochrome c from mitochondria is a crucial step in apoptosis, resulting in the activation of the caspase proteases. A further consequence of cytochrome c release is the enhanced mitochondrial production of superoxide radicals (O2.), which are converted to hydrogen peroxide by manganese-superoxide dismutase. Recently, we showed that cytochrome c is a potent catalyst of 2',7'-dichlorofluorescin oxidation to the fluorescent 2',7'-dichlorofluorescein by these species, leading to the conclusion that 2',7'-dichlorofluorescein fluorescence is a reflection of cytosolic cytochrome c concentration rather than "reactive oxygen species" levels (Burkitt, M. J., and Wardman, P. (2001) Biochem. Biophys. Res. Commun. 282, 329-333). The oxidant generated from cytochrome c has so far not been identified. Several authors have suggested that the hydroxyl radical (*OH) is generated, but others have discussed the possibility of a peroxidase compound I. By examining the effects of various antioxidants (glutathione, ascorbate, and NADH) and "hydroxyl radical scavengers" (ethanol and mannitol) on the rate of 2',7'-dichlorofluorescin oxidation by cytochrome c, together with complementary EPR spin-trapping studies, we demonstrate that the hydroxyl radical is not generated. Instead, our findings suggest the formation of a peroxidase compound I-type intermediate, in which one oxidizing equivalent is present as an oxoferryl heme species and the other as the protein tyrosyl radical previously identified (Barr, D. P., Gunther, M. R., Deterding, L. J., Tomer, K. B., and Mason, R. P. (1996) J. Biol. Chem. 271, 15498-15503). Competition studies involving spin traps indicated that the oxoferryl heme component is the active oxidant. These findings provide an improved understanding of the physicochemical basis of the redox changes that occur during apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M300054200 | DOI Listing |
Physiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Universidad de Talca, Talca, Chile.
Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.
View Article and Find Full Text PDFJ Food Sci
January 2025
Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.
Radiation exposure can lead to reproductive damage (RD), for which there is currently no effective treatment. Natural compounds, particularly fungal polysaccharides, have shown promising therapeutic potential for RD. Due to limited availability of effective polysaccharides, research has turned to alternative sources from edible mushrooms.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:
The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().
View Article and Find Full Text PDFFoods
January 2025
Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
The abundant yet underutilized olive leaves, a renewable by-product of olive cultivation, offer untapped potential for producing high-value bioactive compounds, notably oleacein. Existing extraction methods are often inefficient, yielding low quantities of oleacein due to enzymatic degradation of its precursor, oleuropein, during conventional processing and storage. This study aimed to overcome these limitations by exploring a novel methodology based on freeze-drying, to facilitate the in situ enzymatic biotransformation of oleuropein into oleacein directly within the plant matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!