Xanthic acids have long been known to act as reducing agents. Recently, D609, a tricyclodecanol derivative of xanthic acid, has been reported to have anti-apoptotic and anti-inflammatory properties that are attributed to specific inhibition of phosphatidyl choline phospholipase C (PC-PLC). However, because oxidative stress is involved in both of these cellular responses, the possibility that xanthates may act as antioxidants was investigated in the current study. Finding that xanthates efficiently scavenge hydroxyl radicals, the mechanism by which D609 and other xanthate derivatives may protect against oxidative damage was further examined. The xanthates studied, especially D609, mimic glutathione (GSH). Xanthates scavenge hydroxyl radicals and hydrogen peroxide, form disulfide bonds (dixanthogens), and react with electrophilic products of lipid oxidation (acrolein) in a manner similar to GSH. Further, upon disulfide formation, dixanthogens are reduced by glutathione reductase to a redox active xanthate. Supporting its role as an antioxidant, D609 significantly (p < 0.01) reduces free radical-induced changes in synaptosomal lipid peroxidation (TBARs), protein oxidation (protein carbonyls), and protein conformation. Thus, in addition to inhibitory effects on PC-PLC, D609 may prevent cellular apoptotic and inflammatory cascades by acting as antioxidants and novel GSH mimics. These results are discussed with reference to potential therapeutic application of D609 in oxidative stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1071576021000040664DOI Listing

Publication Analysis

Top Keywords

xanthic acid
8
oxidative stress
8
scavenge hydroxyl
8
hydroxyl radicals
8
d609
6
derivatives xanthic
4
acid novel
4
novel antioxidants
4
antioxidants application
4
application synaptosomes
4

Similar Publications

Xanthates, derivatives of xanthic acid, are widely utilized across industries such as agrochemicals, rubber processing, pharmaceuticals, metallurgical, paper and mining to help separate metals from ore. Despite their prevalent use, many registered xanthates lack comprehensive information on potential risks to human health and the environment. The mining sector, a significant consumer of xanthates, drives demand.

View Article and Find Full Text PDF

Adsorption of As(III) by microplastics coexisting with antibiotics.

Sci Total Environ

January 2024

College of Resources and Environment, Qingdao Agricultural University,Qingdao 266005, PR China. Electronic address:

Although recent studies have been conducted on the pollution and toxicity of microplastics with heavy metals or antibiotics, it is necessary to further investigate the coexistence of antibiotics and heavy metals on the surface of microplastics. In this study, the mechanisms of As(III) adsorption by polystyrene (PS) and polyamide (PA) microplastics in the presence of antibiotics (ciprofloxacin, CIP) were investigated. Adsorption behavior was investigated using kinetic and isotherm models, and the effects of microplastic particle size, aging, ion concentration, pH, xanthic acid (FA), and tannic acid (TA) were considered.

View Article and Find Full Text PDF

Xanthates with different alkyl groups, such as ethyl, propyl, butyl, and amyl groups, are widely used in large quantities in the mining flotation of metallic minerals. Xanthates enter environmental waters through mineral processing wastewater discharge and are ionized or hydrolyzed into ions or molecules of xanthic acids (XAs) in water. XAs endanger aquatic plants and animals, as well as human health.

View Article and Find Full Text PDF

A series of self-assembled monolayers (SAMs) on gold were generated by the adsorption of n-alkyl xanthic acids (NAXAs) having the general formula CH3(CH2)nOCS2H (n = 12-15). The structural features of these SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). This series of xanthate SAMs were compared to SAMs generated from the corresponding n-alkanethiols and aliphatic dithiocarboxylic acids (ADTCAs).

View Article and Find Full Text PDF

Photochemistry of S-phenacyl xanthates.

J Org Chem

October 2011

Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A, 625 00 Brno, Czech Republic.

Various synthetically readily accessible S-phenacyl xanthates are shown to undergo photoinitiated homolytic scission of the C-S bond in the primary step. The resultant fragments, phenacyl and xanthic acid radicals, recombine to form symmetrical 1,4-diketones and xanthogen disulfides, respectively, in high to moderate chemical yields in chemically inert solvents. They can also be efficiently trapped by a hydrogen-atom-donating solvent to give acetophenone and xanthic acid derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!