Inactivation of cholinesterase induced by chlorpromazine cation radicals.

Pharmacol Toxicol

Department of Biology, Hokkaido College of Pharmacy, Katuraoka-cho 7-1, Otaru 047-0264, Japan.

Published: February 2003

To clarify the mechanism of the side effect of chlorpromazine, we examined the inactivation of cholinesterase induced by chlorpromazine. Cholinesterase was inactivated and its activity was lost in rat serum during interaction of chlorpromazine with horseradish peroxidase and H2O2. When chlorpromazine was oxidized by horseradish peroxidase and H2O2, the reaction solution colored pink and the visible absorption spectrum was consistent with the absorption spectrum of the chlorpromazine cation radical (CPZ*+). Adding cholinesterase immediately decreased the pink color of CPZ*+, indicating that CPZ*+ directly attacked cholinesterase to cause loss of the enzyme activity. Tryptophan residues in cholinesterase sharply decreased during the interaction of cholinesterase with horseradish peroxidase and H2O2. Presumably, loss of tryptophan residues changed the conformation of the cholinesterase protein and then the activity of the enzyme was lost. Other phenothiazine derivatives, including promethazine, triflupromazine, trifluoperazine, trimeprazine, thioridazine and perphenazine, also inactivated cholinesterase during the oxidation by horseradish peroxidase and H2O2. These results suggest that phenothiazine cation radicals participate in toxicological signs caused by the drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1600-0773.2003.920207.xDOI Listing

Publication Analysis

Top Keywords

horseradish peroxidase
16
peroxidase h2o2
16
inactivation cholinesterase
8
cholinesterase induced
8
induced chlorpromazine
8
chlorpromazine cation
8
cation radicals
8
cholinesterase
8
absorption spectrum
8
tryptophan residues
8

Similar Publications

Coproantigen detection and molecular identification of Cryptosporidium species among newborn and adult farm animals.

AMB Express

January 2025

Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt.

Cryptosporidium sp. is an obligatory intracellular apicomplexan protozoan parasite that causes a disease called cryptosporidiosis with substantial veterinary and medical importance. Therefore, this study aimed to evaluate an early diagnosis of cryptosporidiosis using the anti-Cryptosporidium parvum oocyst immunoglobulin IgG polyclonal antibodies (anti-C.

View Article and Find Full Text PDF

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular disease development. An enzyme-linked immunosorbent assay (ELISA)-mimic system for sensitive and specific oxLDL determination was developed using selective aptamer-molecularly imprinted polymer nanoparticles (AP-MIP NP) coupled with an immunology-based colorimetric assay. The AP-MIP NP were synthesized using solid-phase molecular imprinting by incorporating aptamers into the MIP NP cavities.

View Article and Find Full Text PDF

Rapid detection of hydrogen peroxide and nitrite in adulterated cow milk using enzymatic and nonenzymatic methods on a reusable platform.

RSC Adv

January 2025

Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District Hyderabad 500078 India

Cow milk is readily adulterated due to its complex properties that can emulsify many adulterants. Among the commonly used adulterants in cow milk are hydrogen peroxide (HP) and nitrite. Commercially available HP is added to extend cow milk's shelf life, while nitrite enters through the tap or pond water added to increase cow milk's volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!