Kindling-induced seizures constitute an experimental model of human temporal lobe epilepsy that is associated with changes in the expression of several inflammatory proteins and/or their receptors in distinct brain regions. In the present study, alterations of kinin receptors in the brain of amygdaloid-kindled rats were assessed by means of in vitro autoradiography, using (125)I-labeled 3-4 hydroxyphenyl-propionyl-desArg(9)-D-Arg degrees -[Hyp(3), Thi(5), D-Tic(7), Oic(8)]-bradykinin (B(1) receptors) and (125)I-labeled 3-4 hydroxyphenyl-propionyl-D-Arg degrees -[Hyp(3), Thi(5), D-Tic(7), Oic(8)]-bradykinin (B(2) receptors) as ligands. Results demonstrate that B(2) receptors are widely distributed throughout the brain of control rats. The highest densities were observed in lateral septal nucleus, median preoptic nucleus, dentate gyrus, amygdala, spinal trigeminal nucleus, mediovestibular nucleus, inferior cerebellar peduncles, and in most of cortical regions (0.81-1.4 fmol/mg tissue). In contrast, very low densities of B(1) receptors were detected in all analyzed areas from control rats (0.18-0.26 fmol/mg tissue). When assessed in kindled rats, specific binding sites for B(2) receptors were significantly decreased (41 to 76%) in various brain areas. Conversely, B(1) receptor binding sites were markedly increased in kindled rats, especially in hippocampus (CA2 congruent with CA1 congruent with CA3), Amy and entorhinal, peririnal/piriform, and occipital cortices (152-258%). Data show for the first time that kindling-induced epilepsy results in a significant decline of B(2) receptor binding sites, accompanied by a striking increase of B(1) receptor labeling in the rat brain. An altered balance between B(1) and B(2) receptor populations may play a pivotal role in the onset and/or maintenance of epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.10706 | DOI Listing |
Adv Mater
January 2025
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
NaV(PO), based on multi-electron reactions between V/V/V, is a promising cathode material for SIBs. However, its practical application is hampered by the inferior conductivity, large barrier of V/V, and stepwise phase transition. Herein, these issues are addressed by constructing a medium-entropy material (NaVTiAlCrMnNi(PO), ME-NVP) with strong ME─O bond and highly occupied Na2 sites.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.
Sepsis is a leading cause of death worldwide, with most patient mortality stemming from lingering immunosuppression in sepsis survivors. This is due in part to immune dysfunction resulting from monocyte exhaustion, a phenotype of reduced antigen presentation, altered CD14/CD16 inflammatory subtypes, and disrupted cytokine production. Whereas previous research demonstrated improved sepsis survival in Ticam2 mice, the contribution of TICAM2 to long-term exhaustion memory remained unknown.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.
Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.
Background: Studies of human IgE and its targeted epitopes on allergens have been very limited. We have an established method to immortalize IgE encoding B cells from allergic individuals.
Objective: To develop an unbiased and comprehensive panel of peanut-specific human IgE mAbs to characterize key immunodominant antigenic regions and epitopes on peanut allergens to map the molecular interactions responsible for inducing anaphylaxis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!