The development of bacterial resistance to currently available antibacterial agents is a growing global health problem. Of particular concern are infections caused by multidrug-resistant Gram-positive pathogens which are responsible for significant morbidity and mortality in both the hospital and community settings. A number of solutions to the problem of bacterial resistance are possible. The most common approach is to continue modifying existing classes of antibacterial agents to provide new analogues with improved attributes. Other successful strategies are to combine existing antibacterial agents with other drugs as well as the development of improved diagnostic procedures that may lead to rapid identification of the causative pathogen and permit the use of antibacterial agents with a narrow spectrum of activity. Finally, and most importantly, the discovery of novel classes of antibacterial agents employing new mechanisms of action has considerable promise. Such agents would exhibit a lack of cross-resistance with existing antimicrobial drugs. This review describes the work leading to the discovery of linezolid, the first clinically useful oxazolidinone antibacterial agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200200528 | DOI Listing |
BMC Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing (CP) gram-negative bacteria are the major public health concerns. Gowns used by healthcare workers (HCWs) in daily practice are a source of hospital-acquired infections in hospital settings. The study aimed to determine the prevalence of extended-spectrum beta-lactamase and carbapenemase-producing gram-negative bacteria from gowns of healthcare workers at Debre Berhan Comprehensive Specialized Hospital, Amhara Regional State, Ethiopia.
View Article and Find Full Text PDFNat Commun
January 2025
Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 311400, China.
To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!