Unexpected roles of a Dictyostelium homologue of eukaryotic EF-2 in growth and differentiation.

J Cell Sci

Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.

Published: July 2003

EF-2 is believed to be indispensable for polypeptide chain elongation in protein synthesis and therefore for cell proliferation. Surprisingly, we could isolate ef2 null cells from Dictyostelium discoideum that exhibited almost normal growth and protein synthesis, which suggests that there is another molecule capable of compensating for EF-2 function. The knock-out of Dictyostelium EF-2 (Dd-EF2H; 101 kDa phosphoprotein) impairs cytokinesis, resulting in formation of multinucleate cells. The initiation of differentiation, including the acquisition of aggregation competence, was delayed in Dd-ef2 null cells compared with that in wild-type. By contrast, Dd-ef2 overexpression enhanced the progression of differentiation, thus indicating a positive involvement of Dd-EF2H in growth/differentiation transition.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.00476DOI Listing

Publication Analysis

Top Keywords

protein synthesis
8
null cells
8
unexpected roles
4
roles dictyostelium
4
dictyostelium homologue
4
homologue eukaryotic
4
ef-2
4
eukaryotic ef-2
4
ef-2 growth
4
growth differentiation
4

Similar Publications

Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.

Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!