Inactivated whole avian influenza virus (AIV) vaccine provides protection against homologous haemagglutinin (HA) subtype virus, but poor protection against a heterologous HA virus. Moreover, it induces chickens to produce antibodies to cross-reactive antigens, especially nucleoprotein, which is limits AIV serological surveillance. In this study, a recombinant fowlpox virus co-expressing HA (H5 subtype) and NA (NI subtype)genes of AIV was evaluated for its ability to protect chickens against intramuscular challenge with a lethal dose of highly pathogenic (HP) AIV. Susceptible chickens were also vaccinated by wing-web puncture with the parent fowlpox vaccine virus. Following challenge 4 weeks later with HPAIV, all chickens vaccinated with recombinant virus were protected, while the chickens vaccinated with either the unaltered parent fowlpox vaccine virus or unvaccinated controls experienced 100% mortality following challenge. This protection was accompanied by the high levels of specific antibody to the respective components of the recombinant vaccine. The above results showed that rFPV-HA-NA could be a potential vaccine to replace current inactivated vaccines for preventing AI.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0307945021000070688DOI Listing

Publication Analysis

Top Keywords

chickens vaccinated
12
avian influenza
8
recombinant fowlpox
8
virus
8
fowlpox virus
8
virus co-expressing
8
parent fowlpox
8
fowlpox vaccine
8
vaccine virus
8
vaccine
5

Similar Publications

A major health and financial burden in the chicken sector is salmonella infection. It is difficult to create an oral vaccination that can provide strong intestinal mucosal immunity in birds, particularly cross-protection against several Salmonella serotypes. As a result, the poultry industry needs a powerful oral vaccination platform that uses live bacterial vectors to prevent various Salmonella serotypes.

View Article and Find Full Text PDF

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Very virulent plus Marek's disease virus (vv+MDV) induces severe immunosuppression in commercial chickens. In this study, we evaluated how three Gallid alphaherpesvirus 2 (GaHV-2) vaccines (CVI-988, rMd5-BAC∆Meq, and CVI-LTR) protected against two negative outcomes of vv+MDV infection: (1) reduced viability and frequency of immune cells in the spleen and (2) decreased efficacy of the CEO (chicken embryo origin) vaccine against infectious laryngotracheitis challenge. At 25 days post-infection with vv+MDV 686, all vaccines are protected against the reduced viability of splenocytes.

View Article and Find Full Text PDF

Immunogenicity of Type IV Pilin Proteins from in Chickens.

Microorganisms

January 2025

Chaire en recherche avicole et Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada.

, the causative agent of necrotic enteritis in chickens, is controlled by in-feed antibiotics. With increasing pressure to reduce antimicrobial use, the development of alternative preventive tools is needed. Type IV pili proteins have been shown to be immunogenic in many Gram-positive bacteria.

View Article and Find Full Text PDF

Investigation of Betaine and Vaccine Efficacy for Coccidiosis Prevention in Broilers.

Acta Parasitol

January 2025

Department of Parasitology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey.

Purpose: This study aimed to assess the anticoccidial effects of betaine and a vaccine compared to monensin sodium in experimentally induced coccidiosis in broiler chickens.

Methods: 600 day-old broiler chickens (Ross 308) were randomly assigned to five groups, each with four replicates of 30 birds. While the control group received a basal diet, two experimental groups received basal diet supplemented with either 100 mg/kg monensin sodium or 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!