A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silane treatment effects on glass/resin interfacial shear strengths. | LitMetric

Objective: Methacrylic resin-based dental composites normally use a bifunctional silane coupling agent with an intermediary carbon connecting segment to provide the interfacial phase that holds together the organic polymer matrix with the reinforcing inorganic phase. In this study, fiber pull-out tests were used to measure the interfacial bond strength at the fiber-matrix interface.

Methods: Glass fibers (approximately 30 microm diameter, 8 x 10 (-2)m length, MoSci) were silanated using various concentrations (1, 5 and 10%) of either 3-methacryloxypropyl-trimethoxysilane (MPS) or glycidoxypropyltrimethoxy-silane (GPS) in acetone (99.8%). Rubber (poly(butadiene/acrylonitrile), amine terminated, M(w) 5500) molecules were also attached to the fiber surface via GPS molecules. The resin was comprised of a 60/40 mixture of Bis-phenol-A bis-(2-hydroxypropyl)-methacrylate (BisGMA) and tri (ethylene glycol) dimethacrylate (TEGDMA). A bead of resin approximately 2-4 x 10(-3)m in embedded length was placed on the treated fibers and light cured. The load required to pull the fiber out of the resin was converted to shear bond strength.

Results: Interfacial shear strengths were greater for silanated specimens compared with unsilanated, and for MPS compared with GPS. The same set of samples soaked in 50:50 (v/v) mixtures of ethanol and distilled water for a period of 1 month showed a decrease in properties.

Significance: A positive correlation was found between the amount of silane on the filler surface and the property loss after soaking. Rubber treatment provided improvement in interfacial strength. 5% MPS samples had the highest strength both in soaked as well as unsoaked samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0109-5641(02)00089-1DOI Listing

Publication Analysis

Top Keywords

interfacial shear
8
shear strengths
8
interfacial
5
silane treatment
4
treatment effects
4
effects glass/resin
4
glass/resin interfacial
4
strengths objective
4
objective methacrylic
4
methacrylic resin-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!