Background: Rapamycin inhibits extracellular matrix (ECM) accumulation (fibrosis) and vascular remodeling in experimental models of chronic allograft dysfunction (CAD) by poorly understood mechanisms. The aim of this study was to assess the effect of rapamycin on the expression of fibrosis-associated genes and correlate this with observed changes in ECM remodeling in an experimental of model allograft vasculopathy.

Methods: Vascular remodeling and ECM accumulation (picrosirius red) were measured by computerized histomorphometry of F344-to-Lewis rat aortic allograft sections harvested at serial timepoints. Expression of fibrosis associated genes was studied by means of semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR).

Results: Rapamycin (0.5 mg/kg/day) inhibited intimal hyperplasia, medial ECM accumulation and expansive vascular remodeling (increasing vessel circumference) in rat aortic allografts. This was associated with attenuation of the graft inflammatory infiltrate and a reduction in intragraft gelatinase, collagen III and tissue inhibitor of metalloproteinase 1 (TIMP 1) mRNA levels. At a lower dosage (0.25 mg/kg/day), rapamycin inhibited intimal hyperplasia and medial ECM accumulation, but there was a lesser effect on vascular remodeling. Lower dose allografts were also seen to have a more severe inflammatory infiltrate and larger amounts of intragraft matrix metalloproteinase 9 (MMP 9) mRNA than those treated with the higher dose.

Conclusions: These data suggest that, in addition to the tissue response to injury, the alloimmune injury itself may contribute directly to the vascular remodeling that occurs in allograft vasculopathy. Rapamycin at higher but not lower doses inhibited both of these pathologic processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1053-2498(02)00571-5DOI Listing

Publication Analysis

Top Keywords

vascular remodeling
24
ecm accumulation
16
remodeling experimental
12
rapamycin inhibits
8
experimental model
8
model allograft
8
allograft vasculopathy
8
rat aortic
8
inhibited intimal
8
intimal hyperplasia
8

Similar Publications

Stroke is the second leading cause of death worldwide, according to the latest report by the World Health Organization (WHO). Intracerebral hemorrhage comprises 20-25% of the stroke in the young, with incidence rates of three to six in 100,000 people per year. One of the most common and important causes of hemorrhagic stroke in the general population is hypertension.

View Article and Find Full Text PDF

Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2) mice.

View Article and Find Full Text PDF

The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling.

Free Radic Biol Med

January 2025

Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure.

View Article and Find Full Text PDF

Gut Microbiota-Bone Axis.

Ann Nutr Metab

January 2025

Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.

Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.

Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.

View Article and Find Full Text PDF

Vascular diseases, such as hypertension, atherosclerosis, cerebrovascular, and peripheral arterial diseases, present major clinical and public health challenges, largely due to their common underlying process: vascular remodeling. This process involves structural alterations in blood vessels, driven by a variety of molecular mechanisms. The inhibitor of DNA-binding/differentiation-3 (), a crucial member of ID family of transcriptional regulators, has been identified as a key player in vascular biology, significantly impacting the progression of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!