The C57BL/6J (C57) mouse was selected as a suitable model for early presbyacusis to determine if there were correlations between peripheral pathology (spiral ganglion loss, inner and outer hair cell loss) and calcium binding immunoreactivity in the cochlear nucleus during aging. The quantitative stereological method, the optical fractionator, was used for determining the total number of neurons and calcium binding immunopositive neurons (calbindin, parvalbumin and calretinin) during aging in the posteroventral- and dorsal cochlear nucleus (PVCN and DCN) in C57 mice. Comparing 30-month-old to 1-month-old C57 mice, a percent increase in parvalbumin and calbindin immunoreactivity was evident in both the PVCN and DCN. Correlations were made between peripheral pathology (spiral ganglion and inner and outer hair cell loss) and calcium binding protein expression. Significant correlations between cochlear pathology and the percentage of parvalbumin and calretinin immunoreactive neurons were demonstrated in the DCN. Moreover, significant correlations were found between cochlear pathology and parvalbumin and calbindin in the PVCN. In summary, the findings imply that degenerative changes in the auditory periphery can modulate neuronal homeostasis by increasing calcium binding proteins in the PVCN and DCN during aging. Taken together, these findings suggest a role for calcium binding proteins in protecting against age-induced calcium toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(03)00076-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!