Structurally altered or marker chromosomes are the cytogenetic hallmarks of cancer cells, but their origins are still debated. Here we propose that aneuploidy, which is ubiquitous in cancer and inevitably unbalances thousands of synergistic genes, destabilizes the structure of chromosomes by catalyzing DNA breaks. Aneuploidy catalyzes such breaks by unbalancing teams of enzymes, which synthesize and maintain DNA and nucleotide pools, and even unbalancing histones via the corresponding genes. DNA breaks then initiate deletions, amplifications, and intra- and interchromosomal rearrangements. Our hypothesis predicts that the rate at which chromosomes are altered is proportional to the degree of aneuploidy: the more abnormal the number and balance of chromosomes, the higher the rate of structural alterations. To test this prediction, we have determined the rates at which clonal cultures of diploid and aneuploid Chinese hamster cells generate new, and thus nonclonal, structurally altered chromosomes per mitosis. Based on about 20 metaphases, the number of new, structurally altered chromosomes was 0 per diploid, 0-0.23 per near-diploid, 0.2-1.4 per hypotriploid, 3.25-4.8 per hypertriploid, and 0.4 per near-tetraploid cell. Thus, instability of chromosome structure increases exponentially with the deviation of ploidy from the normal diploid and tetraploid balances. The particular chromosomes engaged in aneuploidy also affected the rates of chromosome alteration, particularly at low aneuploidy indices. We conclude that aneuploidy is sufficient to cause structural instability of chromosomes. Further, we suggest that certain structurally altered chromosomes encode cancer-specific phenotypes that cannot be generated by unbalancing intact chromosomes. We also extend the evidence for aneuploidy causing numerical instability of chromosomes autocatalytically, and adduce evidence that aneuploidy can cause the many gene mutations of cancer cells that have been attributed to various mutator genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-4608(03)00003-7DOI Listing

Publication Analysis

Top Keywords

structurally altered
16
cancer cells
12
altered chromosomes
12
chromosomes
11
aneuploidy
9
instability chromosome
8
chromosome structure
8
increases exponentially
8
dna breaks
8
instability chromosomes
8

Similar Publications

Ultralow Power Cold-Fuse Memory Based on Metal-Oxide-CNT Structure.

Nano Lett

January 2025

Key Lab for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.

One-time programmable (OTP) memory is an essential component in chips, which has extremely high security to protect the stored critical information from being altered. However, traditional OTP memory based on the thermal breakdown of the dielectric has a large programming current, which leads to high power consumption. Here, we report a gate tunneling-induced "cold" breakdown phenomenon in carbon nanotube (CNT) field-effect transistors, and based on this we construct a "cold" fuse (C-fuse) memory where applying a mild gate voltage can break down the CNT channel without damaging the gate dielectric.

View Article and Find Full Text PDF

The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.

View Article and Find Full Text PDF

Native animals worldwide are experiencing long-term coexistence with invasive plants, leading to diverse behavioral changes. Invasive plants may create new habitat structures that affect the distribution or behavior of prey, which in turn might attract predators to these novel habitats, thereby altering predator-prey dynamics within the ecosystem. However, this phenomenon is rarely reported.

View Article and Find Full Text PDF

Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.

Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.

View Article and Find Full Text PDF

Schizophrenia (SCZ) is a chronic psychotic disorder that profoundly alters an individual's perception of reality, resulting in abnormal behavior, cognitive deficits, thought distortions, and disorientation in emotions. Many complicated factors can lead to SCZ, and investigations are ongoing to understand the neurobiological underpinnings of this condition. Presynaptic Netrin G1 and its cognate partner postsynaptic Netrin-G-Ligand-1 (NGL-1) have been implicated in SCZ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!