The camphor hydroxylase cytochrome P450(cam) (CYP101) catalyzes the 5-exo hydroxylation of camphor in the first step of camphor catabolism by Pseudomonas putida. CYP101 forms a specific electron transfer complex with its physiological reductant, the Cys(4)Fe(2)S(2) ferredoxin putidaredoxin (Pdx). Pdx, along with other proteins and small molecules, has also been shown to be an effector for turnover by CYP101. Multidimensional nuclear magnetic resonance (NMR) techniques have been used to make extensive sequential (1)H, (15)N, and (13)C resonance assignments in CYP101 that permit a more complete characterization of the complex formed by CYP101 and Pdx. NMR-detected perturbations in CYP101 upon Pdx binding encompass regions of the CYP101 remote from the putative Pdx binding site, including in particular a region of the CYP101 molecule that has been implicated in substrate access to the active site via dynamical processes. A model for effector activity is proposed in which the primary role of the effector is to prevent uncoupling (formation of reduced oxo species without formation of hydroxycamphor) by enforcing conformations of CYP101 that prevent loss of substrate and/or intermediates prior to turnover. A secondary role could also be to enforce conformations that permit efficient proton transfer into the active site for coupled proton/electron transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi034263sDOI Listing

Publication Analysis

Top Keywords

cyp101
9
model effector
8
effector activity
8
electron transfer
8
transfer complex
8
cyp101 pdx
8
pdx binding
8
active site
8
pdx
5
activity highly
4

Similar Publications

We identified a multisubstrate-bound state, hereby referred as a 3site state, in cytochrome P450cam via integrating molecular dynamics simulation with nuclear magnetic resonance (NMR) pseudocontact shift measurements. The 3site state is a result of simultaneous binding of three camphor molecules in three locations around P450cam: (a) in a well-established "catalytic" site near heme, (b) in a kink-separated "waiting" site along channel-1, and (c) in a previously reported "allosteric" site at E, F, G, and H helical junctions. These three spatially distinct binding modes in the 3site state mutually communicate with each other via homotropic allostery and act cooperatively to render P450cam functional.

View Article and Find Full Text PDF

Redox partner recognition and selectivity of cytochrome P450lin (CYP111A1).

J Inorg Biochem

July 2023

Department of Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA. Electronic address:

The strict requirement of cytochrome P450cam for its native ferredoxin redox partner, putidaredoxin (Pdx), is not exhibited by any other known cytochrome P450 (CYP) system and the molecular details of redox partner selectivity are still not completely understood. We therefore examined the selectivity of a related Pseudomonas cytochrome P450, P450lin, by testing its activity with non-native redox partners. We found that P450lin could utilize Arx, the native redox partner of CYP101D1, to enable turnover of its substrate, linalool, while Pdx showed limited activity.

View Article and Find Full Text PDF

The Cytochrome P450 (CYP450) superfamily has been the subject of intense research for over six decades. Here the HU227 strain of E. coli, lacking the δ-aminolevulinic acid (δ-ALA) synthase gene, was employed, along with [5-C] δ-ALA, in the heterologous expression of P450cam harboring a prosthetic group labeled with C at the four methine carbons (C) and pyrrole C positions.

View Article and Find Full Text PDF

Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from .

Int J Mol Sci

November 2022

Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea.

Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region.

View Article and Find Full Text PDF

While monitoring the reaction of ferric cytochrome P450cam (Cyp101) with substituted peroxybenzoic acids using rapid-scanning, stopped-flow (RSSF) spectroscopy, an intermediate appears en route to formation of the high-valent moiety known as Compound I [Fe(IV)=O/porphyrin radical cation] that is thought to be the key catalytic species for O-atom transfer to substrate. We have previously suggested (Spolitak, T., Dawson, J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!