A simple and sensitive solid-phase fluorescence immunoassay method was developed to detect peptides without separating them from a biological matrix. A near infrared fluorescence detection system was constructed for scanning analyte spots blotted onto protein binding membranes. Hydrophobic membranes were used with a modified vacuum spot blotting system to concentrate the peptide solution into a small area and the overall assay time was thus reduced by eliminating blocking steps. Both direct and indirect immunoassay methods are demonstrated; the indirect is more sensitive and features a 1 pmol detection limit of neat dynorphin A solutions. To further increase the immunoassay sensitivity, a novel capillary blotting system with hydrophilic membranes was designed where optimized sample volumes of 167 nL were deposited for each spot. The area-reduced blotting method shows a 1000-fold improved, 1.3 fmol spot(-1) detection limit of a dynorphin A diluted in a buffered solution of 150 mg L(-1) of casein. Low-flow push-pull perfusates with volumes of 1 microL sampled from the striatum of the rat were assayed for dynorphin A by the method of standard addition. The detection limit was estimated to be 1.9 fmol in the low-flow push-pull perfusates. These data demonstrate a solid-phase near infrared immunofluorescence strategy for the study of peptides directly blotted from chemically complex biological fluid matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b210782a | DOI Listing |
Luminescence
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, China.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!