3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and ambient air pollution. 3-aminobenzanthrone (3-ABA), 3-acetylaminobenzanthrone (3-Ac-ABA) and N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA) have been identified as 3-NBA metabolites. Recently we found that 3-NBA and its metabolites (3-ABA, 3-Ac-ABA and N-Ac-N-OH-ABA) form the same DNA adducts in vivo in rats. In order to investigate whether human cytochrome P450 (CYP) enzymes (i.e., CYP1A2), human N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) contribute to the metabolic activation of 3-NBA and its metabolites, we developed a panel of Chinese hamster V79MZ-h1A2 derived cell lines expressing human CYP1A2 in conjunction with human NAT1, NAT2, SULT1A1 or SULT1A2, respectively. Cells were treated with 0.01, 0.1 or 1 microM 3-NBA, or its metabolites (3-ABA, 3-Ac-ABA and N-Ac-N-OH-ABA). Using both enrichment versions of the (32)P-postlabeling assay, nuclease P1 digestion and butanol extraction, essentially 4 major and 2 minor DNA adducts were detected in the appropriate cell lines with all 4 compounds. The major ones were identical to those detected in rat tissue; the adducts lack an N-acetyl group. Human CYP1A2 was required for the metabolic activation of 3-ABA and 3-Ac-ABA (probably via N-oxidation) and enhanced the activity of 3-NBA (probably via nitroreduction). The lack of acetylated adducts suggests N-deacetylation of 3-Ac-ABA and N-Ac-N-OH-ABA. Thus, N-hydroxy-3-aminobenzanthrone (N-OH-ABA) appears to be a common intermediate for the formation of the electrophilic arylnitrenium ions capable of reacting with DNA. Human NAT1 and NAT2 as well as human SULT1A1 and SULT1A2 strongly contributed to the high genotoxicity of 3-NBA and its metabolites. Moreover, N,O-acetyltransfer reactions catalyzed by human NATs leading to the corresponding N-acetoxyester may be important in the bioactivation of N-Ac-N-OH-ABA. As human exposure to 3-NBA is likely to occur primarily via the respiratory tract, expression of CYPs, NATs and SULTs in respiratory tissues may contribute significantly and specifically to the metabolic activation of 3-NBA and its metabolites. Consequently, polymorphisms in these genes could be important determinants of lung cancer risk from 3-NBA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.11143 | DOI Listing |
Mutagenesis
October 2018
Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK.
The tumour suppressor p53, encoded by TP53, is a key player in a wide network of signalling pathways. We investigated its role in the bioactivation of the environmental carcinogen 3-nitrobenzanthrone (3-NBA)found in diesel exhaust and its metabolites 3-aminobenzanthrone (3-ABA) and N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) in a panel of isogenic human colorectal HCT116 cells differing only with respect to their TP53 status [i.e.
View Article and Find Full Text PDFChem Res Toxicol
October 2017
Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr. 25/29, 91054 Erlangen, Germany.
A product of incomplete combustion of diesel fuel, 3-nitrobenzanthrone (3-NBA), has been classified as a cancer-causing substance. It first gained attention as a potential urinary bladder carcinogen due to the presence of its metabolite in urine and formation of DNA adducts. The aim of the present study was to characterize the dose-response relationship of 3-NBA in human urothelial cancer cell line (RT4) exposed to concentrations ranging from 0.
View Article and Find Full Text PDFExp Cell Res
November 2016
Department of Urology, SUNY at Stony Brook, 11794, USA. Electronic address:
3-Nitrobenzanthrone (3-NBA), a potential human carcinogen, is present in diesel exhaust. The main metabolite of 3-NBA, 3-aminobenzanthrone, was detected in urine of miners occupationally exposed to diesel emissions. Environmental and occupational factors play an important role in development of bladder cancer (BC), one of the most frequent malignancies.
View Article and Find Full Text PDFDNA Repair (Amst)
September 2014
The Ohio State Biochemistry Program, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, Columbus, OH 43210, USA; The Ohio State University Biophysics Program, The Ohio State University, Columbus, OH 43210, USA. Electronic address:
3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)).
View Article and Find Full Text PDFInt J Mol Sci
June 2014
Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843, Prague 2, Czech Republic.
Unlabelled: This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human
Nad(p)h: quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!