Amphetamine has been shown to increase striatal particulate protein kinase C (PKC) activity [Giambalvo (1992b) Neuropharmacology 31:1211-1222]. The present study examined possible mechanisms involved. Specifically, the effects of calcium, endogenous DA, and DA receptors on the amphetamine-induced increase in PKC activity in striatal synaptoneurosomes were examined. Naïve rats and rats pretreated with N-ethoxy-carbonyl-2-ethoxy-1,2-dihydroquinolone (EEDQ, i.p.), a nonselective irreversible receptor antagonist, or with alpha-methyl-p-tyrosine (AMPT, i.p.), a DA synthesis inhibitor, were sacrificed and striatal synaptoneurosomes were prepared. The tissue was incubated with amphetamine, with and without calcium, and PKC activity was then determined by the endogenous phosphorylation of endogenous substrate proteins, as described previously [Giambalvo (1988a) Biochem Pharmacol 37:4001-4007]. It was found that calcium enhanced the effect of amphetamine on PKC activity, even in rats pretreated with EEDQ. Intracellular calcium was required since pretreatment with 1,2-bis (2-aminophenoxy) ethane-N, N, N, N-tetracetic acid acetoxymethyl ester (BAPTA-AM) in vitro attenuated the amphetamine-induced increase in PKC activity, resulting in an inhibition of PKC activity instead. Likewise, endogenous DA was essential since pretreatment with AMPT resulted in a similar amphetamine-induced inhibition of PKC activity. Pretreatment with AMPT did not alter the inhibitory effect of the D2 DA agonist, LY 171555, on PKC activity. It did, however, abolish the calcium-dependent stimulatory effect of the D1 agonist SKF 38393 on PKC activity, rendering it inhibitory regardless of calcium. Considering that both BAPTA-AM and AMPT pretreatments, which diminished DA release without affecting uptake via different mechanisms, produced similar inhibitory effects on PKC activity by amphetamine, these results suggest that the inward transport of amphetamine had an inhibitory effect on PKC activity. In contrast, the outward transport of DA seemed to have a stimulatory effect on PKC activity since incubation with low sodium or with ouabain, conditions that promote DA reverse-transport, increased PKC activity. These results showed that PKC activity was altered differently during inward vs. outward transport. The amphetamine-induced increase in PKC activity was attenuated by pretreatment with DA uptake blockers (nomifensine, GBR 12935, and bupropion), even though these drugs by themselves also increased PKC activity. This effect was diminished by calcium and persisted in rats pretreated with EEDQ. Thus, calcium had a differential effect on the PKC activity induced by a transported substrate (amphetamine) vs. nontransported inhibitors (DA uptake blockers).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/syn.10223 | DOI Listing |
Biosci Biotechnol Biochem
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:
Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.
Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.
Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.
Nutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Department of Pharmacology, University of Alberta, Edmonton, Canada. Electronic address:
Protein kinase C (PKC) signalling has been shown to be dysregulated in various cancers including acute lymphoblastic leukemia (ALL). We have previously determined that changes in the expression levels of SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) can significantly alter 6-mercaptopurine (6-MP) toxicity in ALL cells. 6-MP is a common drug used in ALL chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!