Effects of noise on the spike timing precision of retinal ganglion cells.

J Neurophysiol

Department of Neuroscience, University of Pennsylvania, Philadelphia 19104-6058, USA.

Published: May 2003

Information in a spike train is limited by variability in the spike timing. This variability is caused by noise from several sources including synapses and membrane channels; but how deleterious each noise source is and how they affect spike train coding is unknown. Combining physiology and a multicompartment model, we studied the effect of synaptic input noise and voltage-gated channel noise on spike train reliability for a mammalian ganglion cell. For tonic stimuli, the SD of the interspike intervals increased supralinearly with increasing interspike interval. When the cell was driven by current injection, voltage-gated channel noise and background synaptic noise caused fluctuations in the interspike interval of comparable amplitude. Spikes initiated on the dendrites could cause additional spike timing fluctuations. For transient stimuli, synaptic noise was dominant and spontaneous background activity strongly increased fluctuations in spike timing but decreased the latency of the first spike.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01106.2002DOI Listing

Publication Analysis

Top Keywords

spike timing
16
spike train
12
spike
8
noise spike
8
voltage-gated channel
8
channel noise
8
interspike interval
8
synaptic noise
8
noise
7
effects noise
4

Similar Publications

Article Synopsis
  • Neurons communicate information through variable action potentials that can differ significantly with each stimulus repetition.
  • The study investigates the reliability of cortical neurons when stimulated with simulated synaptic inputs and finds that parvalbumin+ (PV) interneurons exhibit high spiking reliability compared to excitatory neurons.
  • This high reliability in PV interneurons enables precise inhibition of other neurons, while the variability in excitatory neurons allows for better integration of synaptic inputs, ultimately influencing how information is processed in the brain.
View Article and Find Full Text PDF

The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession.

View Article and Find Full Text PDF

Epilepsy, a neurological disorder characterized by recurrent unprovoked seizures, significantly impacts patient quality of life. Current classification methods focus primarily on clinical observations and electroencephalography (EEG) analysis, often overlooking the underlying dynamics driving seizures. This study uses surface EEG data to identify seizure transitions using a dynamical systems-based framework-the taxonomy of seizure dynamotypes-previously examined only in invasive data.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!