Magnetic resonance imaging (MRI) of diffusion and magnetization transfer was combined with 1H-spectroscopic imaging (CSI) to evaluate the clinical potential of in-vivo profiles of various brain pathologies. Ten patients (multiple sclerosis, cerebrovascular disease, leukodystrophy, Alzheimer dementia) and five healthy volunteers were investigated with diffusion-weighted MRI, magnetization transfer imaging, and CSI. Proton spectra were analyzed as ratios of NAA/Cr and Cho/Cr calculated from the peak areas of N-acetylaspartate (NAA), (phospho)-creatine (Cr) and choline (Cho). The apparent diffusion coefficient (ADC) and the magnetization transfer ratio (MTR) were determined in identical voxels to ensure identical partial volume effects compared to CSI. Compared to MTR and ADC assessments, the lower spatial resolution of CSI clearly indicates a hindrance at 1.5 T. In most demyelinating lesions, NAA/Cr reduction paralleled attenuated MTRs and elevated ADCs. By contrast, in acute stroke and some acute MS lesions the ADC was reduced, while MTR and NAA/Cr were also decreased. In Alzheimer's dementia, ADC was increased, MTR unchanged and Cho/Cr increased. In a case of leukodystrophy, ADC was pronouncedly increased, MTR and NAA/Cr both reduced, and Cho/Cr normal. Combined measurements of ADC, MTR and CSI are feasible and provide differential in-vivo information on various brain pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1179/016164103101201373DOI Listing

Publication Analysis

Top Keywords

magnetization transfer
16
combined measurements
8
imaging csi
8
brain pathologies
8
mtr naa/cr
8
increased mtr
8
adc
6
mtr
6
csi
5
magnetization
4

Similar Publications

Purpose: The long scan times of quantitative MRI techniques make motion artifacts more likely. For MR-Fingerprinting-like approaches, this problem can be addressed with self-navigated retrospective motion correction based on reconstructions in a singular value decomposition (SVD) subspace. However, the SVD promotes high signal intensity in all tissues, which limits the contrast between tissue types and ultimately reduces the accuracy of registration.

View Article and Find Full Text PDF

Artificial heterostructures are often realized by stacking different materials to present new emerging properties that are not exhibited by their individual constituents. In this work, non-layered two-dimensional α-MnSe nanosheets were transferred onto LaMnO (LMO) films to obtain a multifunctional heterostructure. The high crystal quality of the MnSe/LMO heterostructure was revealed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy measurements.

View Article and Find Full Text PDF
Article Synopsis
  • Wernicke-Korsakoff encephalopathy, a condition caused by vitamin B1 deficiency, often affects alcoholics and is characterized by memory issues, eye movement problems, and coordination difficulties.
  • A young male patient with a history of alcohol abuse presented with symptoms resembling a stroke, including right-sided weakness and language disturbances, complicating accurate diagnosis.
  • Following treatment with intravenous vitamin B1, the patient ultimately made a full recovery, highlighting how this condition can mimic stroke symptoms and posing challenges in emergency medical settings.
View Article and Find Full Text PDF

This research uses perfluorocarbons (PFCs) as effective alternatives to traditional toxic solvents in reversible -hydrogen-induced polarization (PHIP) for NMR signal enhancement. Hydrogen solubility in PFCs is shown here to be an order of magnitude higher than in typical organic solvents by determination of Henry's constants. We demonstrate how this high H solubility enables the PFCs to deliver substantial polarization transfer from -hydrogen, achieving up to 2400-fold signal gains for H NMR detection and 67,000-fold (22% polarization) for N NMR detection at 9.

View Article and Find Full Text PDF

Spin and valley polarizations (P and P) and tunneling magnetoresistance (TMR) are demonstrated in the ferromagnetic/barrier/normal/barrier/ferromagnetic WSe junction, with the gate voltage and off-resonant circularly polarized light (CPL) applied to the two barrier regions. The minimum incident energy of non-zero spin- and valley-resolved conductance has been derived, which is consistent with numerical calculations and depends on the electric potential U, CPL intensity ΔΩ, exchange field h, and magnetization configuration: parallel (P) or antiparallel (AP). For the P (AP) configuration, the energy region with P = -1 or P = 1 is wider (narrower) and increases with ΔΩ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!