The properties of the carbonate neutral carrier 4-( n-hexadecyl)-3-nitro-1-trifluoroacetylbenzene were compared with those of a similar carrier, without a nitro group, studied previously. In spite of differences in the Hammett constant of the carbonyl group responsible for interaction with the analyte, the analytical characteristics of both carriers, measured under the same conditions, were comparable. Special care was taken to avoid the presence of an excessive carbon dioxide level in the diffusion layer at the membrane-solution interface. The internal reference solution was prepared without carbonate components; the external solution was protected from contact with atmospheric carbon dioxide. Under such conditions the detection limit of both electrodes was extended to 10(-11 )mol L(-1), and the selectivity towards salicylate, chloride, and acetate was significantly improved.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-003-1933-yDOI Listing

Publication Analysis

Top Keywords

detection limit
8
carbon dioxide
8
improved selectivity
4
selectivity detection
4
limit carbonate-selective
4
carbonate-selective electrode
4
electrode properties
4
properties carbonate
4
carbonate neutral
4
neutral carrier
4

Similar Publications

Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China.

Adv Biotechnol (Singap)

February 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine deltacoronavirus (PDCoV) and Swine acute diarrhea syndrome coronavirus (SADS-CoV) rank among the most frequently encountered swine enteric coronaviruses (SECoVs), leading to substantial economic losses to the swine industry. The availability of a rapid and highly sensitive detection method proves beneficial for the monitoring and surveillance of SECoVs. Based on the N genes of four distinct SECoVs, a novel detection method was developed in this study by combining recombinant enzyme polymerase isothermal amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) 12a.

View Article and Find Full Text PDF

Using Machine Learning to Design a FeMOF Bidirectional Regulator for Electrochemiluminescence Sensing of Tau Protein.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

The single-luminophore-based ratiometric electrochemiluminescence (ECL) sensor coupling bidirectional regulator has become a research hotspot in the detection field because of its simplicity and accuracy. However, the limited bidirectional regulator hinders its further development. In this study, by leveraging the robust predictive capabilities of machine learning, we prepared an Fe-based metal-organic framework (FeMOF) as a bidirectional regulator for modulating the dual-emission ECL signals of a single luminophore for the first time.

View Article and Find Full Text PDF

Herein, we present the development and evaluation of a molecularly imprinted polymer (MIP) sensor for the sensitive and selective detection of -nitrosodimethylamine (NDMA) in aqueous environments. MIP coatings over electrochemically active electrodes enable NDMA detection with a notably low detection limit of 1.16 ppb.

View Article and Find Full Text PDF

Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately.

View Article and Find Full Text PDF

Exogenous Coreactant-Free Electrocatalytic Reactive Oxygen Species-Driven Dual-Signal Molecularly Imprinted Electrochemiluminescence Sensor for the Detection of Trenbolone.

Anal Chem

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!